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INTRODUCTION

In the investigation of real physical processes, one deals with both dynamic (differential) and al-
gebraic (functional) dependencies. Such processes are described by differential-algebraic systems [1]
(some equations in them are differential, and the other are algebraic) or mixed difference-differential
systems. One classifies them as hybrid systems [2–5]. However, note that the term “hybrid sys-
tems” is overloaded. Nowadays, especially in publications in English, this term is used mainly in
connection with discrete-continuous systems or systems containing logical variables [6–8]. In gen-
eral, hybridity means inhomogeneity in the nature of the process to be considered or in the methods
to be used in the analysis. The term “hybrid systems” pertains to systems describing processes
or objects with substantially different characteristics, for examples, containing continuous and dis-
crete variables (signals) in the main dynamics, deterministic and random variables or actions, and
so on, which eventually specifies the character (nature) of hybrid systems. There are numerous
examples of hybrid systems. In control theory, there is a well known representative of hybrid
systems, namely, a linear continuous autonomous object described by linear differential equations
(the mathematical model is based on a recording device that operates continuously) and controlled
by a discrete linear autonomous controller described by finite-difference equations (a recording de-
vice that operates discretely is used). These types of systems are usually analyzed on layers and
are known as discrete data systems or digital control systems. Another standard example of a
hybrid control system is a commutation system, where the behavior can be described by finitely
many dynamical models (systems of differential or finite-difference equations) together with a list
of rules for switching between these models. One more direction in the theory of hybrid systems is
related to the analysis of qualitative properties (like stability) of dynamical systems described by
difference-differential equations with discontinuous coefficients, i.e., systems with variable dynamic
structure. A classical practical example of a hybrid system is provided by the heating–cooling
system of a dwelling house. A heater and a conditioner, together with the characteristics of the
heat flow, form a system to be controlled. A thermostat is a discretely controlled system, which
mainly processes symbols “too hot,” “too cool,” and “normal.” There are numerous reasons to
use hybrid models: the adequacy of these models, their justified simplification, the use of digital
devices (a control with the use of computer software); hybrid systems arise in the simulation of the
hierarchical structure of real control systems, in particular, in the description of dynamical, dis-
crete, stochastic subsystems, complex systems, and so on. For more information on hybrid systems,
see [2–10].

In the present paper, we consider algebraic-differential delay systems to which, in particular,
some standard types of linear discrete-continuous systems and systems with retarded argument of
neutral type can be reduced. Such systems can be qualified as hybrid difference-differential systems
or completely regular algebraic-differential systems with delay [11], which are, in turn, a special
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case of descriptor (singular) systems with aftereffect

d

dt

⎛
⎝

0∫

−h

dsG(t, s)x(t + s) +

0∫

−h

dsQ(t, s)u(t + s) + F1(t)

⎞
⎠

=

0∫

−h

dsA(t, s)x(t + s) +

0∫

−h

dsB(t, s)u(t + s) + F2(t),

where an n-vector function x(·) describes the behavior in time of the object (process) to be modeled,
u(·) is an r-vector function specifying the input influence (control), the n-vector functions F1(·) and
F2(·) specify perturbations, the entries of the matrix functions G(t, s), Q(t, s), A(t, s), and B(t, s)
of the corresponding size have a bounded variation with respect to the second argument on [−h, 0]
and h > 0 is the value of the aftereffect.

In the stationary case of this equation with an operator G : C ([−h, 0], Rn) → R
n atomic at

zero, the study of the existence, uniqueness, exponential estimate, and stability of solutions as well
as their representation by the variation-of-constants formula can be found in [12, 13]. All these
problems remain open in the general case for nonatomic operators.

In what follows, we consider properties of solutions of a special case of the above-represented
schemes, namely, linear hybrid difference-differential systems with numerous delays in the state
and the control. The results of the paper were earlier announced in [14].

1. INITIAL VALUE PROBLEM

Consider an object whose mathematical model of the motion is governed by the hybrid difference-
differential system

ẋ(t) =
l∑

i=0

A11i(t)x(t − ih) +
l∑

i=0

A12i(t)y(t − ih) +
l∑

i=0

B1i(t)u(t − ih),

y(t) =
l∑

i=0

A21i(t)x(t − ih) +
l∑

i=0

A22i(t)y(t − ih) +
l∑

i=0

B2i(t)u(t − ih), t ≥ t0,

(1.1)

with the initial conditions

x (t0 + 0) = x (t0) = x0 ∈ R
n,

x(τ) = ϕ(τ), y(τ) = ψ(τ), u(τ) = ξ(τ), τ ∈ (−∞, t0) ;
ϕ(τ) = 0, ψ(τ) = 0, ξ(τ) = 0, τ ∈ (−∞, t0 − lh) .

(1.2)

Here l ∈ N, A220(t) ≡ 0, and the entries of the matrix functions A11i(t) ∈ R
n×n, A12i(t) ∈ R

n×m,
A21i(t) ∈ R

m×n, A22i(t) ∈ R
m×m, B1i(t) ∈ R

n×r, and B2i(t) ∈ R
m×r (i = 0, 1, . . . , l) are piecewise

continuous functions for t ∈ [t0 − lh,+∞).
The functions

ψ(·) ∈ PC ((−∞, t0] , Rm) , ϕ(·) ∈ PC ((−∞, t0] , Rn) , ξ(·) ∈ PC ((−∞, t0] , Rr)

are admissible initial data. An admissible control is a vector function u(·) ∈ PC ([t0,+∞) , Rr).
The symbol PC (∆, Rn) stands for the set of piecewise continuous n-vector functions on the inter-
val ∆.

In the stationary case, the matrices occurring in (1.1) and (1.2) are constant, and the symbol t
is omitted:

Amki(t) = Amki, Bmi(t) = Bmi,

m, k = 1, 2, i = 0, 1, . . . , l, t ≥ −lh, t0 = 0.
(1.3)

Definition 1.1. A solution x(t) = x (t; t0, x0, ϕ, ψ, ξ, u), y(t) = y (t; t0, x0, ϕ, ψ, ξ, u), t ≥ t0, of
system (1.1) with the initial conditions (1.2) and an admissible control u = u(t), t ≥ t0, is defined
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as arbitrary vector functions x(t) and y(t), t ≥ t0, satisfying the first equation of the system for
t ≥ t0, t − t0 �= kh, k = 0, 1, . . . , and the second equation of the system for t ≥ t0; moreover,
the vector function x(·) is assumed to be piecewise smooth and continuous, and y(·) is assumed to
be piecewise continuous on the interval [t0,+∞).

2. INTEGRAL REPRESENTATION OF SOLUTIONS
ON THE BASIS OF ADJOINT SYSTEMS

The role of the Cauchy problem in the theory of dynamical systems was noted in [15, p. 227]:
“As a rule, the Cauchy problem, that is, determination of the phase trajectory for given controls,
given perturbations, and given initial conditions is a key point in practically all simulation proce-
dures.” In what follows, for nonstationary systems, we derive formulas representing solutions via
the solutions of the corresponding adjoint systems, which generalizes the variation-of-constants for-
mula, well-known for ordinary systems, to the case of such systems. To derive such representations,
we use the classical ideas due Bellman and Cooke [12], but the adjoint systems and hence their solu-
tions require a substantial modification for our class of problems. The presence of a jump equation
in the adjoint system is essential in this connection. The results are refined in the stationary case,
which, in particular, permits one to consider the natural direction of time in the adjoint system.
The special case of hybrid difference-differential systems given by simplest systems in the normal
form with a single delay was considered in [16].

Let matrix functions X(t, τ), Z(t, τ), and Y (t, τ) be solutions of the adjoint system

∂X(t, τ)
∂τ

+
l∑

i=0

(X(t, τ + ih)A11i(τ + ih) + Y (t, τ + ih)A21i(τ + ih)) = 0,

τ ≤ t, τ + ih �= t − kh, i = 0, . . . , l, k = 1, 2, . . . , (2.1)
Tt = [(t − t0)/h] for t ≥ t0,

Y (t, τ) =
l∑

i=0

(X(t, τ + ih)A12i(τ + ih) + Y (t, τ + ih)A22i(τ + ih)) , τ ≤ t, (2.2)

X(t, t − kh − 0) − X(t, t − kh + 0) =
k∑

i=k−l

Z(t, t − ih)A21 k−i(t − ih), (2.3)

Z(t, t − kh) =
k∑

i=k−l

Z(t, t − ih)A22 k−i(t − ih), k = 1, 2, . . . , Tt, (2.4)

Y (t, τ) = 0, X(t, τ) = 0, Z(t, τ) = 0, τ > t. (2.5)

Theorem 2.1. There exists a unique solution

x(t) = x (t; t0, x0, ϕ, ψ, ξ, u) , y(t) = y (t; t0, x0, ϕ, ψ, ξ, u) , t ≥ t0,

of system (1.1) with the initial conditions (1.2) and an admissible control u(τ), τ ∈ [t0, t]. It can be
computed by the formula

l∑
i=0

t∫

t0

(Y (t, τ + ih)B2i(τ + ih) + X(t, τ + ih)B1i(τ + ih)) u(τ)dτ

+
Tt∑

j=0

j∑
k=j−l

Z(t, t − kh)B2j−k(t − kh)u(t − jh)

+
l∑

i=0

t0∫

t0−ih

(Y (t, τ + ih)A22i(τ + ih) + X(t, τ + ih)A12i(τ + ih)) ψ(τ)dτ
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+
l∑

i=0

t0∫

t0−ih

(Y (t, τ + ih)B2i(τ + ih) + X(t, τ + ih)B1i(τ + ih)) ξ(τ)dτ

+
l∑

i=0

t0∫

t0−ih

(X(t, τ + ih)A11i(τ + ih) + Y (t, τ + ih)A21i(τ + ih)) ϕ(τ)dτ

+
Tt+l∑

j=Tt+1

Tt∑
k=j−l

Z(t, t − kh)A21j−k(t − kh)ϕ(t − jh) + X (t, t0 − 0) x0

+
Tt+l∑

j=Tt+1

Tt∑
k=j−l

Z(t, t − kh)A22j−k(t − kh)ψ(t − jh)

+
Tt+l∑

j=Tt+1

Tt∑
k=j−l

Z(t, t − kh)B2j−k(t − kh)ξ(t − jh)

=
{

x(t) for t ≥ t0 if X(t, t − 0) = In and Z(t, t) = 0 ∈ R
n×m

y(t) for t ≥ t0 if X(t, t − 0) = A210(t) ∈ R
m×n and Z(t, t) = Im.

(2.6)

Here and throughout the following, the symbol Ik stands for the identity k × k matrix.

Proof. The existence and uniqueness of a solution of system (1.1) with the initial conditions (1.2)
and a piecewise continuous control can justified by integrating this system by the step method. Let
us prove the representation (2.6) on the basis of classical ideas related to adjoint boundary value
problems [12].

To be definite, we assume that t− t0 �= Tth and Tt > l. Since the entries of the matrix functions
X(t, ·) and Y (t, ·) and the components of the vector functions x(·), y(·), u(·), ϕ(·), ψ(·), and ξ(·) are
piecewise continuous, it follows from the main system (1.1), (1.2) and the adjoint system (2.1)–(2.5)
that

t∫

t0

X(t, τ)

(
ẋ(τ) −

l∑
i=0

A11i(τ)x(τ − ih) −
l∑

i=0

A12i(τ)y(τ − ih)

−
l∑

i=0

B1i(τ)u(τ − ih)

)
dτ +

t∫

t0

Y (t, τ)

(
y(τ) −

l∑
i=0

A21i(τ)x(τ − ih)

−
l∑

i=0

A22i(τ)y(τ − ih) −
l∑

i=0

B2i(τ)u(τ − ih)

)
dτ +

Tt∑
k=0

Z(t, t − kh)y(t − kh)

−
Tt∑

k=0

Z(t, t − kh)
l∑

i=0

A21i(t − kh)x(t − kh − ih)

−
Tt∑

k=0

Z(t, t − kh)
l∑

i=0

A22i(t − kh)y(t − kh − ih)

−
Tt∑

k=0

Z(t, t − kh)
l∑

i=0

B2i(t − kh)u(t − kh − ih) = 0, t > t0,

or

t∫

t0

X(t, τ)ẋ(τ)dτ −
t∫

t0

l∑
i=0

(X(t, τ)A11i(τ) + Y (t, τ)A21i(τ)) x(τ − ih)dτ
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+

t∫

t0

Y (t, τ)y(τ)dτ −
t∫

t0

l∑
i=0

(Y (t, τ)A22i(τ) + X(t, τ)A12i(τ)) y(τ − ih)dτ

−
t∫

t0

l∑
i=0

(Y (t, τ)B2i(τ) + X(t, τ)B1i(τ)) u(τ − ih)dτ

+
Tt∑

k=0

Z(t, t − kh)y(t − kh) −
Tt∑

k=0

Z(t, t − kh)
l∑

i=0

A21i(t − kh)x(t − kh − ih)

−
Tt∑

k=0

Z(t, t − kh)
l∑

i=0

A22i(t − kh)y(t − kh − ih)

−
Tt∑

k=0

Z(t, t − kh)
l∑

i=0

B2i(t − kh)u(t − kh − ih) = 0, t > t0. (2.7)

The entries of the matrix function X(t, ·) can have only jump discontinuities at the points τ = t−kh,
k = 1, 2, . . . , Tt. Then, by integrating by parts in the first term in (2.7) on each of the intervals
(t − (k + 1)h, t − kh), k = 0, 1, . . . , Tt, by performing a shift of the integration variable, and by
changing the summation variable according to the formula i + k = j, we obtain

−
Tt−1∑
k=0

t−kh∫

t−kh−h

∂

∂τ
(X(t, τ))x(τ)dτ −

t−Tth∫

t0

∂

∂τ
(X(t, τ))x(τ)dτ

+
Tt−1∑
k=0

(X(t, t − kh − 0)x(t − kh − 0) − X(t, t − kh − h + 0)x(t − kh − h + 0))

+ X (t, t − Tth − 0) x (t − Tth − 0) − X (t, t0 + 0) x0

−
l∑

i=0

t−ih∫

t0−ih

(X(t, τ + ih)A11i(τ + ih) + Y (t, τ + ih)A21i(τ + ih)) x(τ)dτ

−
l∑

i=0

t−ih∫

t0−ih

(Y (t, τ + ih)A22i(τ + ih) + X(t, τ + ih)A12i(τ + ih)) y(τ)dτ

−
l∑

i=0

t−ih∫

t0−ih

(Y (t, τ + ih)B2i(τ + ih) + X(t, τ + ih)B1i(τ + ih)) u(τ)dτ

+

t∫

t0

Y (t, τ)y(τ)dτ + Z(t, t)y(t) +
Tt∑

k=1

Z(t, t − kh)y(t − kh)

−
Tt∑

k=0

Z(t, t − kh)
k+l∑
j=k

A21j−k(t − kh)x(t − jh)

−
Tt∑

k=0

Z(t, t − kh)
k+l∑
j=k

A22j−k(t − kh)y(t − jh)

−
Tt∑

k=0

Z(t, t − kh)
k+l∑
j=k

B2j−k(t − kh)u(t − jh)
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= −
t∫

t0

∂

∂τ
(X(t, τ))x(τ)dτ +

Tt∑
k=1

(X(t, t − kh − 0) − X(t, t − kh + 0))x(t − kh)

+ X(t, t − 0)x(t) − X (t, t0 + 0) x0 +

t∫

t0

Y (t, τ)y(τ)dτ

−
l∑

i=0

t−ih∫

t0−ih

(X(t, τ + ih)A11i(τ + ih) + Y (t, τ + ih)A21i(τ + ih)) x(τ)dτ

−
l∑

i=0

t−ih∫

t0−ih

(Y (t, τ + ih)A22i(τ + ih) + X(t, τ + ih)A12i(τ + ih)) y(τ)dτ

−
l∑

i=0

t−ih∫

t0−ih

(Y (t, τ + ih)B2i(τ + ih) + X(t, τ + ih)B1i(τ + ih)) u(τ)dτ

+ Z(t, t)y(t) +
Tt∑

k=1

Z(t, t − kh)y(t − kh) −
Tt∑

k=0

Z(t, t − kh)
k+l∑
j=k

A21j−k(t − kh)x(t − jh)

−
Tt∑

k=0

Z(t, t − kh)
k+l∑
j=k

A22j−k(t − kh)y(t − jh)

−
Tt∑

k=0

Z(t, t − kh)
k+l∑
j=k

B2j−k(t − kh)u(t − jh), t > t0.

By changing the order of integration in the last three terms and by taking into account the relation
Z(t, τ) = 0, τ > t, we obtain

−
t∫

t0

∂

∂τ
(X(t, τ))x(τ)dτ +

Tt∑
k=1

(X(t, t − kh − 0) − X(t, t − kh + 0))x(t − kh)

+ X(t, t − 0)x(t) − X (t, t0 + 0) x0 +

t∫

t0

Y (t, τ)y(τ)dτ

−
l∑

i=0

t0∫

t0−ih

(X(t, τ + ih)A11i(τ + ih) + Y (t, τ + ih)A21i(τ + ih)) ϕ(τ)dτ

−
l∑

i=0

t∫

t0

(X(t, τ + ih)A11i(τ + ih) + Y (t, τ + ih)A21i(τ + ih)) x(τ)dτ

−
l∑

i=0

t0∫

t0−ih

(Y (t, τ + ih)A22i(τ + ih) + X(t, τ + ih)A12i(τ + ih)) ψ(τ)dτ

−
l∑

i=0

t∫

t0

(Y (t, τ + ih)A22i(τ + ih) + X(t, τ + ih)A12i(τ + ih)) y(τ)dτ
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−
l∑

i=0

t0∫

t0−ih

(Y (t, τ + ih)B2i(τ + ih) + X(t, τ + ih)B1i(τ + ih)) ξ(τ)dτ

−
l∑

i=0

t∫

t0

(Y (t, τ + ih)B2i(τ + ih) + X(t, τ + ih)B1i(τ + ih)) u(τ)dτ

+ Z(t, t)y(t) +
Tt∑

k=1

Z(t, t − kh)y(t − kh) − Z(t, t)A210(t)x(t)

−
Tt∑

j=1

j∑
k=j−l

Z(t, t − kh)A21j−k(t − kh)x(t − jh)

−
Tt+l∑

j=Tt+1

Tt∑
k=j−l

Z(t, t − kh)A21j−k(t − kh)ϕ(t − jh)

−
Tt∑

j=0

j∑
k=j−l

Z(t, t − kh)A22j−k(t − kh)y(t − jh)

−
Tt+l∑

j=Tt+1

Tt∑
k=j−l

Z(t, t − kh)A22j−k(t − kh)ψ(t − jh)

−
Tt∑

j=0

j∑
k=j−l

Z(t, t − kh)B2j−k(t − kh)u(t − jh)

−
Tt+l∑

j=Tt+1

Tt∑
k=j−l

Z(t, t − kh)B2j−k(t − kh)ξ(t − jh) = 0, t > t0.

Let us rearrange the terms in the last relation:

(X(t, t − 0) − Z(t, t)A210(t)) x(t) + Z(t, t)y(t)

−
t∫

t0

(
∂X(t, τ)

∂τ
+

l∑
i=0

(X(t, τ + ih)A11i(τ + ih) + Y (t, τ + ih)A21i(τ + ih))

)
x(τ)dτ

+

t∫

t0

(
Y (t, τ) −

l∑
i=0

(Y (t, τ + ih)A22i(τ + ih) + X(t, τ + ih)A12i(τ + ih))

)
y(τ)dτ

+
Tt∑

k=1

(
X(t, t − kh − 0) − X(t, t − kh + 0) −

k∑
i=k−l

Z(t, t − ih)A21k−i(t − ih)

)

× x(t − kh) +
Tt∑

k=1

(
Z(t, t − kh) −

k∑
i=k−l

Z(t, t − ih)A22k−i(t − ih)

)
y(t − kh)

−
l∑

i=0

t∫

t0

(Y (t, τ + ih)B2i(τ + ih) + X(t, τ + ih)B1i(τ + ih)) u(τ)dτ

−
Tt∑

j=0

j∑
k=j−l

Z(t, t − kh)B2j−k(t − kh)u(t − jh)
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−
l∑

i=0

t0∫

t0−ih

(Y (t, τ + ih)A22i(τ + ih) + X(t, τ + ih)A12i(τ + ih)) ψ(τ)dτ

−
l∑

i=0

t0∫

t0−ih

(Y (t, τ + ih)B2i(τ + ih) + X(t, τ + ih)B1i(τ + ih)) ξ(τ)dτ

−
l∑

i=0

t0∫

t0−ih

(X(t, τ + ih)A11i(τ + ih) + Y (t, τ + ih)A21i(τ + ih)) ϕ(τ)dτ

− X (t, t0 + 0) x0 −
Tt+l∑

j=Tt+1

Tt∑
k=j−l

Z(t, t − kh)A21j−k(t − kh)ϕ(t − jh)

−
Tt+l∑

j=Tt+1

Tt∑
k=j−l

Z(t, t − kh)A22j−k(t − kh)ψ(t − jh)

−
Tt+l∑

j=Tt+1

Tt∑
k=j−l

Z(t, t − kh)B2j−k(t − kh)ξ(t − jh) = 0, t > t0. (2.8)

Since the matrix functions X(t, τ), Z(t, τ), and Y (t, τ) satisfy the adjoint system, it follows that
relation (2.8) can be represented in the form

(X(t, t − 0) − Z(t, t)A210(t)) x(t) + Z(t, t)y(t)

= X (t, t0 + 0) x0 +
Tt∑

j=0

j∑
k=j−l

Z(t, t − kh)B2j−k(t − kh)u(t − jh)

+
l∑

i=0

t∫

t0

(Y (t, τ + ih)B2i(τ + ih) + X(t, τ + ih)B1i(τ + ih)) u(τ)dτ

+
l∑

i=0

t0∫

t0−ih

(X(t, τ + ih)A11i(τ + ih) + Y (t, τ + ih)A21i(τ + ih)) ϕ(τ)dτ

+
l∑

i=0

t0∫

t0−ih

(Y (t, τ + ih)A22i(τ + ih) + X(t, τ + ih)A12i(τ + ih)) ψ(τ)dτ

+
l∑

i=0

t0∫

t0−ih

(Y (t, τ + ih)B2i(τ + ih) + X(t, τ + ih)B1i(τ + ih)) ξ(τ)dτ

+
Tt+l∑

j=Tt+1

Tt∑
k=j−l

Z(t, t − kh)A21j−k(t − kh)ϕ(t − jh)

+
Tt+l∑

j=Tt+1

Tt∑
k=j−l

Z(t, t − kh)A22j−k(t − kh)ψ(t − jh)

+
Tt+l∑

j=Tt+1

Tt∑
k=j−l

Z(t, t − kh)B2j−k(t − kh)ξ(t − jh), t > t0, t − Tth �= t0. (2.9)

DIFFERENTIAL EQUATIONS Vol. 42 No. 6 2006



REPRESENTATION OF SOLUTIONS OF HYBRID DIFFERENCE-DIFFERENTIAL . . . 797

Now let t − Tth = t0. Then in the representation of the integral

t∫

t0

X(t, τ)ẋ(τ)dτ =
Tt−1∑
k=0

t−kh∫

t−kh−h

X(t, τ)ẋ(τ)dτ +

t−Tth∫

t0

X(t, τ)ẋ(τ)dτ, t > t0,

the last term vanishes, and consequently, the jump equation (2.3) in the adjoint system proves to
be incomplete. As a result, formula (2.9) remains valid with X (t, t0 + 0) replaced by X (t, t0 − 0);
i.e., the term −X (t, t0 + 0) x (t0) is replaced by −X (t, t0 − 0) x (t0), which is valid for t− Tth �= t0
as well, since in the last case, the matrix function X(t, τ) is continuous for τ = t0 :

X (t, t0 + 0) = X (t, t0 − 0) .

Therefore, relation (2.9), together with the boundary conditions for the adjoint system, implies
that the representation (2.6) is valid for arbitrary t, Tt > l. In a similar way, one can justify
relation (2.9) for Tt ≤ l.

A straightforward verification shows that the representation (2.6) also remains valid for t = t0.
The proof of Theorem 2.1 is complete.

Remark 2.1. Note that if x(t), t ≥ t0, then Z(t, t − kh) = 0, k = 0, 1, . . . , Tt, and, as follows
from (2.3), X(t, τ) is a continuous function for τ ≤ t. Therefore, terms containing the function
Z(t, ·) in (2.6) can be omitted in this case.

Remark 2.2. In the Cauchy formula (2.6), one can set X (t, t0 − 0) = X (t, t0) if the matrix
function X(t, τ) is assumed to be left continuous with respect to the second argument.

3. REPRESENTATION OF SOLUTIONS OF STATIONARY HYBRID
DIFFERENCE-DIFFERENTIAL SYSTEMS

Theorem 3.1. The solution of system (1.1)–(1.3) with an admissible control u(τ), τ ∈ [0, t],
exists, is unique, and can be represented in the form

x(t) =

t∫

0

l∑
j=0

(X∗
x(t − τ − jh)B1j + Y ∗

x (t − τ − jh)B2j)u(τ)dτ

+ x (t; 0, x0, ϕ, ψ, ξ, 0) , t ≥ 0,

(3.1)

with the initial conditions X∗
x(0) = X∗(0) = In and Z∗

x(0) = Z∗(0) = 0 ∈ R
n×m and

y(t) =

t∫

0

l∑
j=0

(
X∗

y (t − τ − jh)B1j + Y ∗
y (t − τ − jh)B2j

)
u(τ)dτ

+
Tt∑

j=0

j∑
k=j−l

Z∗
y (kh)B2j−ku(t − jh) + y (t; 0, x0, ϕ, ψ, ξ, 0) , t ≥ 0,

(3.2)

with the initial conditions X∗
y (0) = X∗(0) = A210 ∈ R

m×n and Z∗
y (0) = Z∗(0) = Im. Here the

n-vector function x (t; 0, x0, ξ, ψ, ϕ, 0) and the m-vector function y (t; 0, x0, ξ, ψ, ϕ, 0) , τ ∈ [−lh, 0],
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depend only on the initial data and have the form

x (t; 0, x0, ϕ, ψ, ξ, 0) =
l∑

j=0

0∫

−jh

(X∗
x(t − τ − jh)A12j + Y ∗

x (t − τ − jh)A22j)ψ(τ)dτ

+
l∑

j=0

0∫

−jh

(X∗
x(t − τ − jh)B1j + Y ∗

x (t − τ − jh)B2j) ξ(τ)dτ

+
l∑

j=0

0∫

−jh

(X∗
x(t − τ − jh)A11j + Y ∗

x (t − τ − jh)A21j)ϕ(τ)dτ

+ X∗
x(t)x0,

(3.3)

y (t; 0, x0, ϕ, ψ, ξ, 0) =
Tt+l∑

j=Tt+1

Tt∑
k=j−l

Z∗
y (kh) (A21j−kϕ(t − jh) + A22j−kψ(t − jh)

+ B2j−kξ(t − jh)) +
l∑

j=0

0∫

−jh

(
X∗

y (t − τ − jh)A11j

+ Y ∗
y (t − τ − jh)A21j

)
ϕ(τ)dτ + X∗

y (t)x0

+
l∑

j=0

0∫

−jh

(
X∗

y (t − τ − jh)A12j + Y ∗
y (t − τ − jh)A22j

)
ψ(τ)dτ

+
l∑

j=0

0∫

−jh

(
X∗

y (t − τ − jh)B1j + Y ∗
y (t − τ − jh)B2j

)
ξ(τ)dτ,

(3.4)

where the matrix functions X∗(·), Z∗(·), and Y ∗(·) are solution of the adjoint system

−dX∗(t)
dt

+
l∑

j=0

(X∗(t − jh)A11j + Y ∗(t − jh)A21j) = 0, t ≥ 0, t �= kh, (3.5)

Y ∗(t) =
l∑

j=0

(X∗(t − jh)A12j + Y ∗(t − jh)A22j) , t ≥ 0, (3.6)

X∗(kh) − X∗(kh − 0) =
k∑

j=k−l

Z∗(jh)A21k−j , (3.7)

Z∗(kh) =
k−1∑

j=k−l

Z∗(jh)A22k−j , (3.8)

for t ≥ 0, k = 1, . . . , Tt; moreover,

Y ∗(t) = 0, X∗(t) = 0, Z∗(t) = 0, t < 0. (3.9)

Remark 3.1. At points of discontinuity t = kh, k = 0, 1, . . . , Tt, of the matrix functions X∗(t),
the right derivatives are considered in Eq. (3.5), and the matrix functions themselves are assumed
to be right continuous.
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Theorem 3.1 follows from Theorem 2.1 in view of the fact that, in the stationary case, the
solution of the adjoint system (2.1)–(2.5) is given by the matrix functions X(t, τ) = X∗(t − τ),
Y (t, τ) = Y ∗(t − τ), and Z(t, τ) = Z∗(t − τ), where X∗(·), Z∗(·), and Y ∗(·) are solutions of
system (3.5)–(3.9) with the ordinary direction of time t ≥ t0 = 0.

4. EXAMPLES

4.1. Consider the hybrid difference-differential system

ẋ(t) = x(t) + y(t), y(t) = x(t) + y(t − 1), t ≥ 0, (4.1)

where x(t), y(t) ∈ R and the initial conditions are given in the form

x(+0) = x(0) = 0, y(τ) = ψ(τ) =
{

0 for τ ∈ (−1, 0)
1 for τ = −1.

The adjoint system (3.5)–(3.9) acquires the form

ẋ∗(t) = x∗(t) + y∗(t), t ≥ 0, t �= k, (4.2)
y∗(t) = x∗(t) + y∗(t − 1), t ≥ 0, (4.3)
y∗(t) = 0, t < 0, (4.4)

x∗(k) − x∗(k − 0) = z∗(k), (4.5)
z∗(k) = z∗(k − 1), k = 1, 2, . . . , Tt. (4.6)

Then, on the basis of the representations (3.3) and (3.4) and the initial conditions, we obtain the
solution of system (4.1) in the form

x(t) ≡ 0 for t ≥ 0 [here x∗
x(0) = 1, z∗

x(0) = 0] ,

y(t) = z∗
y (Tt) ψ (t − Tt − 1) =

{ 0 for t �= k
1 for t = k, k = 0, 1, . . . , Tt[

here x∗
y(0) = 1, z∗

y(k) = 1, k = 0, 1, . . .
]
.

Note that such a solution cannot be obtained by the standard application of the Laplace trans-
form to system (4.1).

4.2. Let us now illustrate the scheme of using the representations (3.3) and (3.4) by the following
initial value problem for system (4.1):

x(0) = 1, y(τ) = ψ(τ) = −1, τ ∈ [−1, 0).

To be definite, we find the corresponding solution x(t), y(t), where 1 < t < 2.
To find x(t), we solve the adjoint system (4.2)–(4.6) by the step method for x∗

x(0) = 1 and
z∗

x(0) = 0 and use the representation (3.3) at each step. From (4.6) and (4.5), we successively find
z∗

x(k) = 0 and x∗
x(k) = x∗

x(k − 0), k = 1, 2, . . . , Tt. We have x∗
x(t) = y∗

x(t) = e2t and x∗
x(1) = e2 for

t ∈ [0, 1). It follows from the representation (3.3) that (Tt = 0)

x(t) = −
0∫

−1

y∗
x(t − τ − 1)dτ + x∗

x(t) =

t−1∫

t

y∗
x(s)ds + e2t

= −
0∫

t−1

y∗
x(s)ds −

t∫

0

y∗
x(s)ds + e2t = −

t∫

0

e2sds + e2t =
1
2

+
1
2
e2t.

If t ∈ [1, 2), then y∗
x(t) = x∗

x(t) + e2(t−1) and

x∗
x(t) = e2(t−1)e2 +

t∫

1

e2(t−τ)e2(τ−1)dτ = e2(t−1)
(
e2 + t − 1

)
,

y∗
x(t) =

(
t + e2

)
e2(t−1), x∗

x(2) = e2
(
1 + e2

)
.
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From the representation (3.3), we obtain (Tt = 1)

x(t) = −
0∫

−1

y∗
x(t − τ − 1)dτ + x∗

x(t) =

t−1∫

t

y∗
x(s)ds + e2(t−1)

(
e2 + t − 1

)

= −
1∫

t−1

y∗
x(s)ds −

t∫

1

y∗
x(s)ds + e2(t−1)

(
e2 + t − 1

)

= −
1∫

t−1

e2sds −
t∫

1

(
s + e2

)
e2(s−1)ds + e2(t−1)

(
e2 + t − 1

)

= −1
2

(
e2 − e2(t−1)

)
− 1

2
(
e2 + t

)
e2(t−1) +

1
2

(
e2 + 1

)
+

1
4

(
e2(t−1) − 1

)

+ e2(t−1)
(
e2 + t − 1

)
= e2(t−1)

(
1
2
e2 +

1
2
t − 1

4

)
+

1
4
.

To find y(t), we solve the adjoint system (4.2)–(4.6) by the step method for x∗
y(0) = 1 and

z∗
y(0) = 1 and use the representation (3.4) at each step. From (4.6) and (4.5), we successively find

z∗
y(k) = 1 and x∗

y(k) = 1 + x∗
y(k − 0), k = 1, 2, . . . , Tt. If t ∈ [0, 1), then x∗

y(t) = y∗
y(t) = e2t and

x∗
y(1) = 1 + e2. From the representation (3.4), we obtain (Tt = 0)

y(t) = −
0∫

−1

y∗
y(t − τ − 1)dτ − z∗

y (Tt) + x∗
y(t) =

t−1∫

t

y∗
y(s)ds − 1 + e2t

= −
0∫

t−1

y∗
y(s)ds −

t∫

0

y∗
y(s)ds − 1 + e2t =

1
2
e2t − 1

2
.

We have x∗
y(t) = e2(t−1) (t + e2) and y∗

y(t) = e2(t−1) (t + e2 + 1) for t ∈ [1, 2).
From the representation (3.4), we obtain (Tt = 1)

y(t) = −
0∫

−1

y∗
y(t − τ − 1)dτ − z∗

y (Tt) + x∗
y(t) =

t−1∫

t

y∗
y(s)ds − 1 + e2(t−1)

(
t + e2

)

= −
1∫

t−1

y∗
y(s)ds −

t∫

1

y∗
y(s)ds − 1 + e2(t−1)

(
t + e2

)

= −
1∫

t−1

e2sds −
t∫

1

e2(s−1)
(
s + e2 + 1

)
ds − 1 + e2(t−1)

(
t + e2

)

= e2(t−1)

(
1
2
t +

1
2
e2 +

1
4

)
− 1

4
.

5. IMPLICIT CRITERION FOR THE H-t1-CONTROLLABILITY
OF NONSTATIONARY HYBRID DIFFERENCE-DIFFERENTIAL SYSTEMS

Consider the problem on the relative controllability with a projection H for linear hybrid
difference-differential systems with numerous delays. The investigation of this problem is performed
on the basis of properties of the attainability set of nonstationary and stationary systems, which
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are defined on the basis of the corresponding representations of the solutions (2.6) and (3.3), (3.4).
In some special cases of hybrid difference-differential systems, the relative controllability problem
was considered in [3, 17].

Definition 5.1. System (1.1), (1.2) is said to be relatively H-t1-controllable for t1 > t0 if for

arbitrary vectors x0 ∈ R
n and

∣∣∣∣x1

y1

∣∣∣∣ ∈ R
n+m and arbitrary admissible initial data ψ(τ), ϕ(τ), and

ξ(τ), τ ∈ [t0 − lh, t0], there exists an admissible control u(·) such that the corresponding solution
of system (1.1), (1.2) has the property

H

[
x (t1)
y (t1)

]
= H

[
x1

y1

]
.

If H = In+m, then the system is said to be relatively t1-controllable; for H = [In 0], it is said
to be relatively t1-controllable with respect to x, and for H = [0 Im], it is said to be relatively
t1-controllable with respect to y.

By CΣ(t0,t1) we denote the set of continuity points of the system parameters, that is, points τ ,
τ ∈ (t0, t1), at which all matrix functions Ajki(τ), j, k = 1, 2, B1i(τ), B2i(τ), X (t1, τ), Z (t1, τ), and
Y (t1, τ) are continuous.

By taking into account the separation of motions in the system under the action of controls and
the initial data, in the analysis of relative controllability, one can assume without loss of generality
that initial data are zero.

The H-attainability set of system (1.1) with zero initial data at time t1 can be written out on
the basis of the solution representation (2.6) in the form

K (t1) =

{
γ ∈ R

s :

γ =

t1∫

t0

H

l∑
i=0

[
Xx (t1, τ + ih) Yx (t1, τ + ih)
Xy (t1, τ + ih) Yy (t1, τ + ih)

][
B1i(τ + ih)
B2i(τ + ih)

]
u(τ)dτ

+ H

Tt1∑
k=0

k∑
i=k−l

[
0

Zy (t1, t1 − kh)

]
B2k−i (t1 − ih) u (t1 − kh)

∀u(·) ∈ PC ([t0, t1] , Rr)

}
,

where Xx(t, τ), Yx(t, τ), and Zx(t, τ) are the solutions of the adjoint system (2.1)–(2.5) with the
initial conditions Xx(t, t − 0) = X(t, t − 0) = In and Zx(t, t) = Z(t, t) = 0 ∈ R

n×m, and Xy(t, τ),
Yy(t, τ), and Zy(t, τ) are the solutions of the adjoint system (2.1)–(2.5) with the initial conditions
Xx(t, t − 0) = X(t, t − 0) = A210(t) ∈ R

m×n and Zx(t, t) = Z(t, t) = Im.
Let K0 =

{
Hµ : ∀µ ∈ R

d
}

be the linear span of the columns of the matrix H ∈ R
k×d, d = n+m;

then the relative H-t1-controllability is equivalent to the inclusion K (t1) ⊃ K0 or (K (t1))
⊥ ⊂ K⊥

0

for the orthogonal complements, which, in turn, is equivalent to the following assertion.

Theorem 5.1. System (1.1), (1.2) is relatively H-t1-controllable if and only if the relation
g′H = 0 is valid for any vector g ∈ R

s such that

g′H
l∑

i=0

[
Xx (t1, τ + ih) Yx (t1, τ + ih)
Xy (t1, τ + ih) Yy (t1, τ + ih)

] [
B1i(τ + ih)
B2i(τ + ih)

]
= 0,

(τ + ih) ∈ CΣ(t0,t1), i = 0, . . . , l,

g′H

k∑
i=k−l

[
0

Zy (t1, t1 − ih)

]
B2 k−i (t1 − ih) = 0, k = 0, 1, . . . , Tt1 .
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Proof. We have

(
(K (t1))

⊥ ⊂ K⊥
0

)
⇔ (∀g ∈ R

s g′K (t1) = 0 ⇒ g′K0 = 0)

⇔
(
∀g ∈ R

s

g′H

t1∫

t0

l∑
i=0

[
Xx (t1, τ + ih) Yx (t1, τ + ih)
Xy (t1, τ + ih) Yy (t1, τ + ih)

][
B1i(τ + ih)
B2i(τ + ih)

]
u(τ)dτ

+ g′H

Tt1∑
k=0

k∑
i=k−l

[
0

Zy (t1, t1 − ih)

]
B2k−i (t1 − ih) u (t1 − ih) = 0

∀u(·) ∈ PC ([t0, t1] , Rr) ⇒ g′H = 0

)

⇔
(
∀g ∈ R

p

t1∫

t0

∥∥∥∥∥g′H
l∑

i=0

[
Xx (t1, τ + ih) Yx (t1, τ + ih)
Xy (t1, τ + ih) Yy (t1, τ + ih)

][
B1i(τ + ih)
B2i(τ + ih)

]∥∥∥∥∥
2

dτ

+
Tt1∑
k=0

∥∥∥∥∥g′H

k∑
i=k−l

[
0

Zy (t1, t1 − ih)

]
B2k−i (t1 − ih)

∥∥∥∥∥
2

= 0 ⇒ g′H = 0

)

⇔
(
∀g ∈ R

p g′H

l∑
i=0

[
Xx (t1, τ + ih) Yx (t1, τ + ih)
Xy (t1, τ + ih) Yy (t1, τ + ih)

][
B1i(τ + ih)
B2i(τ + ih)

]
= 0,

(τ + ih) ∈ CΣ(t0,t1), i = 0, . . . , l,

g′H

k∑
i=k−l

[
0

Zy (t1, t1 − ih)

]
B2k−i (t1 − ih) = 0, k = 0, 1, . . . , Tt1 , g′H = 0

)
,

and the proof of the theorem is complete.

Remark 5.1. In the proof of the necessity of the assertion of Theorem 5.1, the control function
has been chosen in the form

u(τ) =

(
g′H

l∑
i=0

[
Xx (t1, τ + ih) Yx (t1, τ + ih)
Xy (t1, τ + ih) Yy (t1, τ + ih)

][
B1i(τ + ih)
B2i(τ + ih)

])′

,

(τ + ih) ∈ CΣ(t0,t1), i = 0, . . . , l,

u (t1 − kh) =
k∑

i=k−l

(
g′H

[
0

Zy (t1, t1 − ih)

]
B2k−i (t1 − ih)

)′

, k = 0, 1, . . . , Tt1 .

An implicit criterion for the H-t1-controllability of stationary hybrid systems is a straightforward
consequence of Theorem 5.1.
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Theorem 5.2. System (1.1)–(1.3) is relatively H-t1-controllable if and only if

Span

{
H

l∑
i=0

[
Xx (t1 − τ − ih) Yx (t1 − τ − ih)
Xy (t1 − τ − ih) Yy (t1 − τ − ih)

][
B1i

B2i

]
,

(t1 − τ − ih) ∈ CΣ(0,t1), i = 0, . . . , l,

H

k∑
i=k−l

[
0

Zy(ih)

]
B2k−i = 0, k = 0, 1, . . . , Tt1 ,H

}

= Span

{
H

l∑
i=0

[
Xx (t1 − τ − ih) Yx (t1 − τ − ih)
Xy (t1 − τ − ih) Yy (t1 − τ − ih)

][
B1i

B2i

]
,

(t1 − τ − ih) ∈ CΣ(0,t1), i = 0, . . . , l,

H

k∑
i=k−l

[
0

Zy(ih)

]
B2k−i = 0, k = 0, 1, . . . , Tt1

}
,

where the symbol Span {Q1(τ), Q2(τ), . . . , Qk(τ), τ ∈ (t0, t1)} stands for linear span of the columns
of the matrices Q1(τ), Q2(τ), . . . , Qk(τ) for τ ∈ (t0, t1).

CONCLUSION

For hybrid difference-differential systems with retarded argument, one can pose the Cauchy
problem in a special way, which always has a unique solution on the interval [t0, t]. An adjoint sys-
tem, which is characterized by the presence of jump equations, is constructed for a time-dependent
system. For the adjoint system with various initial conditions, we have obtained an integral rep-
resentation of the solution in the form of the variation-of-constants formula for the continuous
and piecewise continuous components of the vector of phase coordinates, which generalizes earlier
obtained results for ordinary systems and systems with retarded argument. The results can be
used for the analysis of the relative controllability of algebraic-differential delay systems and can
be refined in the stationary case. Moreover, for stationary systems, one can obtain representations
of solutions of hybrid difference-differential systems in the form of series [14] in solutions of their
determining equations, which generalizes the representation of solutions of ordinary systems on the
basis of the expansion of a matrix exponential. This result permits one to extract finitely many
generators in the linear span of the solutions and hence to obtain an efficient parametric criterion
for the relative controllability of stationary hybrid difference-differential systems.
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