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The study of real-life physical processes encounters
not only differential but also algebraic (functional) rela-
tions. Such processes are described by differential alge-
braic systems [1], which are known as hybrid [2–4]. It
should be noted that the term “hybrid systems” is over-
loaded. Generally speaking, hybridity means that the
nature of the process under study or the methods used
for its description and analysis are inhomogeneous. At
present, especially in English-language publications,
the term “hybrid” refers primarily to discrete–continu-
ous systems or systems with logical variables [5–7]. We
consider differential algebraic (hybrid) delay systems
to which, in particular, certain standard types of linear
discrete–continuous systems can be reduced.
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functions. The external action 
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 is a piece-
wise continuous 
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-vector function (admissible control).
The right-hand derivative is considered at 

 

t

 

 = 

 

t

 

0

 

 in (1).
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The solution x(t) = x(t; t0, x0, ϕ, ψ, ξ, u), y(t) = y(t;
t0, x0, ϕ, ψ, ξ, u) (t ≥ t0) to system (1), (2) with initial
conditions (3) and an admissible control u = u(t) (t ≥ t0)
is defined as arbitrary vector functions x(t) and y(t) (t ≥
t0) that satisfy the second equation and satisfy the first
equation in the system almost everywhere for t ≥ t0.
Here, it is assumed that x(·) is continuous and y(·) is
piecewise continuous on the interval [0, +∞).

For system (1)–(3), we obtain solution representa-
tions (variation-of-constants formulas), which were
previously known for ordinary systems and systems
with a delayed argument [8–10]. The fundamental dif-
ference of the new representations is that the adjoint
system of the equation involves jump equations. For
stationary systems (1)–(3), solutions’ representations
are given in the form of series over solutions to the sys-
tems’ determining equations, which is a substantial
generalization of similar formulas for ordinary systems
(via a series expansion of a matrix exponential func-
tion). The results are applied to the investigation of the
relative controllability of differential algebraic systems
with delay. We establish several useful algebraic prop-
erties of solutions to the corresponding determining
equations, which are used to find a finite number of
generators in the linear span of columns of the control-
lability matrix.

Suppose that matrix-valued functions X*(t, τ), Z*(t, τ),
and Y*(t, τ) are the solutions to the reverse-time adjoint
system

(4)

almost everywhere for τ ≤ t;
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(6)

(7)

where

(8)

The symbol [z] in (7) stands for the integer of part of z.
Theorem 1. System (1)–(3) with an admissible con-

trol u(τ) (τ ∈ [t0, t]) has a unique solution x(t) = x(t; t0,
x0, ϕ, ψ, ξ, u), y(t) = y(t; t0, x0, ϕ, ψ, ξ, u) (t ≥ t0) given
by the formula
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Note that, for x(t) with t ≥ t0, we have Z*(t, t – kh) =
0, k = 0, 1, …, Tt, and it follows from (6) that X*(t, τ) is
continuous for τ ≤ t. Therefore, the terms in (9) that
involve Z*(t, ·) can be omitted. For stationary systems,
the adjoint system and representation (9) simplify since
the solution X*(t, τ), Y*(t, τ), Z*(t, τ) can be chosen to
be a function of the single argument t – τ; thus, the
usual direction of time can be used in the adjoint sys-
tem: t ≥ t0 = 0.

The following growth estimate for solutions to
hybrid systems is valid.

Theorem 2. For each solution to stationary sys-
tem (1), (2) corresponding to initial data (3) with an
admissible control u(·) that increases no faster than
exponentially (i.e., ||u(t)|| ≤ Meσt, t ≥ 0, where M and σ
are positive constants), there are positive numbers L
and α such that ||x(t)|| ≤ Leαt and ||y(t)|| ≤ Leαt for t ≥ 0.

An exponential estimate of solutions for x(t) can be
obtained following the classical approach [8, 9] designed
for solutions to systems with an aftereffect, while a sub-
tler estimation procedure is required for y(t). In view of
the resulting estimates, stationary systems (1)–(3) can be
analyzed by applying the Laplace transform. Therefore,
the solutions to such systems can be represented as series
in terms of the solutions to the determining equations of
these systems.

Following [2, 11], we introduce the determining
equation for stationary system (1), (2):

(10)

with the initial conditions Xk(t) = 0 and Yk(t) = 0 if k <
0 or t < 0; Uk(t) = 0 if k2 + t2 ≠ 0; and U0(0) = Ir, where
Ik is the k × k identity matrix.
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Lemma 1. We have the identities

(11)

for |ω| < ω1, where ω1 is a sufficiently small positive
number.

The lemma is proved by induction. Identity (11) was
obtained in [12] in the special case where system (1),
(2) is one with a retarded argument.

Theorem 3. The solution to stationary system (1)–
(3) can be represented in the form of the series
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Note that the series representations in terms of the
solutions to the determining equations for the solutions
x(·; 0, x0, ψ, ϕ, ξ, 0) and y(·; 0, x0, ψ, ϕ, ξ, 0) to homoge-
neous system (1)–(3) do not have such a complete form
as for x(·; 0, 0, 0, 0, 0, u) and y(·; 0, 0, 0, 0, 0, u). How-
ever, if ψ(τ) = 0, ϕ(τ) = 0, ξ(τ) = 0, and τ ∈ [–lh, 0], we
have the expansion

where 00 = 1 and (t) and (t) are the solution to
Eq. (10) at r = n with the matrices B10 = In, B1i = 0, B20 =
0, and B2i = 0 (i = 0, 1, …, l).

Let H be an arbitrary p × (n + m) matrix.

Definition 1. System (1)–(3) is called H–t1-control-

lable for t1 > 0 if, for any vector  ∈ Rn + m and any

initial data, there exists a piecewise continuous control
u(·) such that the solution to the system has the property

H  = H .

As a consequence of Theorem 3, we obtain the fol-
lowing criterion for relative H–t1-controllability.

Proposition 1. Stationary system (1)–(3) is H–t1-
controllable if and only if
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=  rank H
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,,∈
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In Proposition 1, we have to check the rank of a
matrix containing an infinite number of columns.
Below, additional properties of solutions to the
determining equations are established that reduce
the solvability of the relative controllability prob-
lem for system (1), (2) to the determination of the
rank of a matrix with a finite number of rows and
columns.

Let the numbers r00 = 1 and rij (i = 0, 1, …, n; j = 0,
1, …, n(m + 1)l) be determined by the (characteristic)
equation

(13)

Lemma 2. The solutions Xγ(t) and Yγ(t) (t ≥ 0) to
determining equation (10) satisfy characteristic equa-
tion (13):

0 det Im A22iω
i

i 0=

l
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n
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⎜ ⎟
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⎟
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∑
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n

∑

where θk = min{k, n(m + 1)l} for k = 0, 1, … and γ = n +
1, n + 2, ….

Lemma 3. There are real numbers pij (i = 0, 1, …,
(m + n)l and j = 0, 1, …, θk = min{k, n(n + m)l2}, where
k = 0, 1, …) such that

where γ ≥ (n + m)l2 + 1 and γ ∈ N.
Lemmas 2 and 3 are proved by induction. Similar

lemmas for the special case of system (1), (2) with no
difference equation were derived in [12].

Lemmas 2 and 3 can be used to improve the H−t1-
controllability criterion.

Theorem 4. Stationary system (1)–(3) is H−t1-con-
trollable if and only if

Xγ kh( )
Y γ kh( )

r0 j
Xγ k j–( )h( )
Y γ k j–( )h( )j 1=

θk

∑–=

– rij
Xγ i– k j–( )h( )
Y γ i– k j–( )h( )

,
j 0=

θk

∑
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n

∑

Xk γh( )
Yk γh( )

p0 j
Xk j– γh( )
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θk

∑–=

– pij
Xk j– γ i–( )h( )
Yk j– γ i–( )h( )

,
j 0=

θk

∑
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m n+( )l

∑

rank H H
Xk jh( )
Yk jh( )

, H 0

Y0 ih( )
, 

k 0 1 … n; j, , , 0 1 …, min Tt1 0– m n+( )l,{ };, ,= =

i 0 1 … min Tt1
m n+( )l,{ }, , ,=

,

=  rank H
Xk jh( )
Yk jh( )

, H 0

Y0 ih( )
, 

k 0 1 … n; j, , , 0 1 …, min Tt1 0– m n+( )l,{ };, ,= =

i 0 1 … min Tt1
m n+( )l,{ }, , ,=

,

where  = .

Thus, we can say that the property of relative H–t1-
controllability becomes saturated.

Proposition 2. Stationary system (1)–(3) is H–t1-
controllable for t1 > (m + n)l = t∗ if and only if it is
H−t∗-controllable.

For special systems (1), (2), the problem of relative
t1-controllability was studied in [2, 3]; however, the
method of [2, 3] supposed determining the rank of a

Tt1 0– Tt1 ε–
ε +0→
lim matrix whose size depends on t1 and unboundedly

increases with t1.
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