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V. CONCLUSION

In this note, a new approach has been established to study the
problem of stochastic stability for a class of nonlinear stochastic
systems with semi-Markovian jump parameters. It has been shown
that the existing results on stochastic stability for Markovian jump
systems also hold for semi-Markovian jump systems. The semi-Mar-
kovian jump systems are less conservative and more applicable in real
practices. A numerical example is given to illustrate the feasibility and
effectiveness of the theoretic results obtained.
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On the Observability of Linear Differential-Algebraic
Systems With Delays

V. M. Marchenko, O. N. Poddubnaya, and Z. Zaczkiewicz

Abstract—The problem of -observability is considered for the sim-
plest linear time-delay differential-algebraic system consisting of differen-
tial and difference equations. A determining equation system is introduced
and a number of algebraic properties of the determining equation solutions
is established, in particular, the well-known Hamilton–Cayley matrix the-
orem is generalized to the solutions of determining equation. As a result,
an effective parametric rank criterion for the -observability is given. A
dual controllability result is also formulated.

Index Terms—Determining equations, differential-algebraic systems, du-
ality, observability, time-delay.

I. INTRODUCTION

The note deals with linear stationary differential-algebraic systems
with delays (DAD systems), with some equations being differential, the
other—difference, with some variables being continuous the other—
piecewise continuous (see also [1]–[5]). Observe that some kinds of
neutral type time-delay and discrete-continuous hybrid systems can be
regarded as examples of DAD systems.

Example 1: Consider a linear neutral type time-delay system

d

dt
(y(t)� A22y(t� h)) = A11y(t) +A12y(t� h): (1)

If we denote x(t) = y(t)�A22y(t�h), we obtain the following DAD
system:

_x(t) =A11x(t) + (A11A22 + A12)y(t� h)

y(t) =x(t) + A22y(t� h):

Example 2: Consider the following linear discrete-continuous
system:

_x(t) =A11x(t) + A12y[k]; t 2 [kh; (k + 1)h) (2a)

y[k] =A21x(kh) + A22y[k � 1]; k = 0; 1; . . . (2b)

with initial conditions

x(0) = x(0+) = x0 y[�1] = y0;
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where x(t) 2 n, y(t) 2 m, and A11, A12, A21, A22 are constant
matrices of compatible sizes. Consider

~y(t) =
x(kh)

y[k]
; for t 2 [kh; (k + 1)h) ; k = 0; 1; . . .

where

x(kh) = e
A (kh�(k�1)h)

x(kh� h)

+

kh

kh�h

e
A (kh��)

A12y[k � 1]d�

= e
A h

x(kh� h)

+

h

0

e
A (h�s)

dsA12y[k � 1]; k = 0; 1; . . .

and initial conditions are given by

x(0) =x(0+) = x0

~y(�) =
e�A h x0�

h

0
eA (h��)A12y0d�

y0
; � 2 [�h; 0):

It is not difficult to see that (2) can be represented as a DAD system of
the form

_x(t) = ~A11x(t) + ~A12~y(t)

~y(t) = ~A21x(t) + ~A22~y(t� h); t � 0

with ~A11 = A11, ~A12 = [0 A12], ~A21 = 0

~A22 =
eA h h

0
eA (h��)A12d�

A21e
A h A22 +A21

h

0
eA (h��)A12d�

:

We believe that the previous examples provide the motivation for fur-
ther investigation of differential-algebraic systems with delays

_x(t) =

l

i=0

(A11ix(t� hi) + A12iy(t� hi))

y(t) =

l

i=0

(A21ix(t� hi) + A22iy(t� hi)

where A11i 2
n�n, A12i 2

n�m, A21i 2
m�n, A22i 2

m�m,
A220 = 0, and 0 < h0 < h1 < . . . < hl are constant delays.

The problem of controllability of systems with after-effect began
its history with [6], where the problem of controllability to zero
function (complete controllability) was formulated for the simplest
retarded type system. Simultaneously, Kirillova and Churakova [7]
and, independently, Weiss [8] investigated the problem of relative
(Euclidean, n-) controllability. For such a type of controllability,
effective rank conditions were obtained [7] in the terms of determining
equations. Later, the determining equation techniques were extended
to the problems of n-controllability and observability for various
classes of linear stationary systems with several concentrated delays
and to neutral time-delay systems (see, for example, [2], [9]–[14], and
the references therein). The book [11] (see also [13]) and survey [10]
present a general overview of determining equation techniques.

In this note, we consider DAD systems of the simplest form. In order
to investigate observability of such a system, we introduce determining

equations that describe rank type conditions for n-observability with
respect to the continuous variable. The rank type conditions are used
to establish a n-observability–controllability duality principle for the
DAD systems.

II. PRELIMINARIES

In this section, we extend the well-known ordinary time-delay de-
termining equation techniques [10], [11] to the investigation of DAD
systems. Let us consider observation system

_x(t) =A11x(t) +A12y(t); t > 0 (3a)

y(t) =A21x(t) +A22y(t� h); t � 0 (3b)

with output

z(t) = B1x(t) +B2y(t); (3c)

and initial conditions

x(+0) = x0; y(�) =  (�); � 2 [�h; 0); (4)

where x(t) 2 n, y(t) 2 m, z(t) 2 r , t � 0;A11 2
n�n,A12 2

n�m, A21 2
m�n, A22 2

m�m, B1 2
r�n, B2 2

r�m;
0 < h is a constant delay; x0 2 n;  2 PC([�h;0); m), and
PC([�h; 0); m) is a set of piecewise continuousm-vector-functions
in [�h; 0]. Observe that y(t) at t = 0 is determined by (3b).

Using the Laplace transformation, one can prove (details are in [15])
that the solution of (3) and (4) can be represented as follows:

x(t) =

+1

k=0

Xk+1(jh)A12(A22)
i+1

�

t�(j+i)h

0

(t� (j + i)h� � )k

k!
 (� � h)d�

+

+1

k=0

(t� jh)k

k!
Xk+1(jh)x0

y(t) =

+1

k=0

Yk+1(jh)A12(A22)
i+1

�

t�(j+i)h

0

(t� (j + i)h� � )k

k!
 (� � h)d�

+

+1

k=0

(t� jh)k

k!
Yk+1(jh)x0

+

+1

i=0

(A22)
i+1

 (t� (i+ 1)h)

where  (�) � 0 for � 62 [�h; 0) and functional matrices Xk(t),
Yk(t), t � 0, k = 0; 1; . . ., satisfy the following determining equations
of (3):

Xk(t)=A11Xk�1(t)+A12Yk�1(t)+Uk�1(t) (5a)

Yk(t)=A21Xk(t)+A22Yk(t�h) (5b)

Zk(t)=B1Xk(t)+B2Yk(t); t�0; k=0; 1; 2; . . . (5c)
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with initial conditions

Xk(t) = 0; Yk(t) = 0; Zk(t) = 0 for t < 0 or k � 0

U0(0) = In; Uk(t) = 0 for t2 + k2 6= 0:

The previous equations are introduced in accordance with the stan-
dard determining equation techniques [7], [10], [11] (see also [2], [13],
and [14]). It is not difficult to see that Xk(t) = 0, Yk(t) = 0, Zk(t) =
0 for t 6= jh, where j = 0; 1; . . . and k = 0; 1; . . .

Here, we establish some algebraic properties of Zk(t).
Lemma 1: The following identity holds:

B1+B2(Im�A22!)
�1A21 A11+A12(Im�A22!)

�1A21

i

�

+1

l=0

Zi+1(lh)!
l; i = 0; 1; . . . (6)

where j!j < !1 and !1 is a sufficiently small real number.
Proof: See the Appendix.

Let us define

A(!) =A11 +A12(Im � A22!)
�1A21 2

n�n(!)

C(!) = B1 +B2(Im � A22!)
�1A21 2 r�n(!):

Here and in what follows, p�q(!) and p�q[!] are the sets of p by q
matrices with rational and polynomial entries in !, respectively.

The characteristic equation of A(!) is given by

0 =�(�) = det �In �A11 � A12(Im �A22!)
�1A21

=
1

(�(!))n
det (��(!)In � �(!)A11 �A12Q1(!)A21)

=
1

(�(!))n

n

i=0

nm

j=0

rij�
n�i!j = 0 (7)

where Q1(!) 2
m�m[!] is the adjoint of (Im � A22!), det(Im �

A22!) = �(!) 2 1�1[!], real numbers rij , i = 0; 1; . . . ; n; j =
0; 1; . . . ; nm, are defined by elements of matricesA11,A12,A21,A22,
and r00 = 1.

Let us rewrite identity (7) as follows:

�n = �

nm

j=1

r0j�
n!j �

n

i=1

nm

j=0

rij�
n�i!j : (8)

Then, we can formulate the following.
Lemma 2: The solutions Zk(t), t � 0, of the determining equation

(5c) satisfy the condition

Zk(lh) = �

�

j=1

r0jZk ((l� j)h)�

n

i=1

�

j=0

rijZk�i ((l� j)h)

for l = 0; 1; . . ., where �l = minfl; nmg and k = n+ 1; n+ 2; . . ..
Proof: See the Appendix.

Similar to Lemmas 1 and 2, we can formulate Lemmas 3 and 4.

Lemma 3: The following identities hold:

B1(In � A11!)
�1A12! +B2

� Im � A21(In �A11!)
�1A12!

�1
A22

l

� A21 (In � (A11 +A12A21)!)
�1

�

+1

k=1

Zk(lh)!
k�1; l = 1; 2; . . .

where j!j < !1 and !1 is a sufficiently small real number.
Let us introduce the following notation:

D(!)= Im�A21(In�A11!)
�1A12!

�1
A222

m�m(!)

F (!)= A21 (In�(A11+A12A21)!)
�1 2 m�n(!)

G(!)= B1(In�A11!)
�1A12!+B2 2 r�m(!)

�(!)=det(In�A11!)

�(!)=det (Im�(!)�A21Q2(!)A12!)

Q2(!) 2
n�n[!] and Q3(!) 2

m�m[!] denote the adjoints of
(In � A11!) and (Im�(!)� A21Q2(!)A12!) respectively.

We transform the characteristic equation of D(!), �(�) =
det(�Im � D(!)) = 0, as follows:

0 = det �Im � Im � A21

Q2(!)

�(!)
A12!

�1

A22

= det �Im � �(!) (Im�(!)� A21Q2(!)A12!)
�1A22

=
1

�(!)m
det (��(!)Im � �(!)Q3(!)A22)

which, when j!j < !1 and !1 is a sufficiently small positive number,
is equivalent to

0 = det (��(!)Im � �(!)Q3(!)A22) =

m

i=0

nm

j=0

pij�
m�i!j (9)

where pij , i = 0; 1; . . . ; m; j = 0; 1; . . . ; nm2, are real numbers
expressed by elements of matrices A11, A12, A21, A22, and p00 = 1.

We can now formulate the following.
Lemma 4: SolutionsZk(lh), k � 1, l � 0, of determining equation

(5c) satisfy the following conditions:

Zk(lh) = �

�

j=1

p0jZk�j(lh)�

m

i=1

�

j=0

pijZk�j ((l� i)h)

where k = 1; 2; . . ., l = m + 1;m + 2; . . ., and �k = minfk �
1; nm2g.

Lemmas 2 and 4 are generalizations of the Hamilton–Cayley matrix
theorem to solution Zk(t) of determining equation (5c).

We can prove the following.
Lemma 5: Functions fkj(t) = (t � jh)k=k! for t � jh � 0 and

fkj(t) = 0 for t � jh < 0, where k = 0; 1; . . .; j = 0; 1; . . ., are
linearly independent for t � 0.

Proof: For t � 0, t 2 [jh; (j + 1)h), j = 0, assume that
+1

k=0
�k0(t

k=k!) � 0, t 2 [0; h), �ij 2 . By letting t = 0, we
obtain �00 = 0. This implies +1

k=1
�k0(t

k�1=k!) � 0, t 2 [0; h),
and �10 = 0. Analogously, �l0 = 0, l = 0; 1; . . . Hence, Lemma 5
holds true for j = 0. Then, the proof is by induction on j.
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III. MAIN RESULTS

A. Criterion for n-Observability of Differential-Algebraic Systems
With Delays

Let x(t;  ; x0), y(t;  ; x0) be the solution at time t � 0 of (3)
corresponding to initial conditions (4). Similarly, z(t) = z(t;  ; x0),
~z(t) = ~z(t;  ; ~x0) denote the outputs corresponding to the solutions
x(t) = x(t;  ; x0), y(t) = y(t;  ; x0) and ~x(t) = ~x(t;  ; ~x0),
~y(t) = ~y(t;  ; ~x0), respectively.

Definition 1: System (3) is said to be n-observable with respect to
x if for every x0, ~x0 2 n the condition

z(t;  ; x0) � ~z(t;  ; ~x0); for every

 2 PC ([�h; 0); m) ; and for t � 0

implies that x0 = ~x0.
Theorem 1: System (3) is n-observable with respect to x if and

only if

rank
Z�(�h)

� = 0; . . . ;m; � = 1; . . . ; n
:= rank

Z1(0)

Z1(h)
...

Z1(mh)

Z2(0)
...

Zn(mh)

=n:

Proof: By the series representation of the solutions x(t), y(t) and
(3c), z(t; �; x0) = ~z(t; �; ~x0) is equivalent to the following:

B1

+1

k=0

(t� jh)k

k!
Xk+1(jh)x0

+B2

+1

k=0

(t� jh)k

k!
Yk+1(jh)x0

= B1

+1

k=0

(t� jh)k

k!
Xk+1(jh)~x0

+B2

+1

k=0

(t� jh)k

k!
Yk+1(jh)~x0:

It follows from here that

+1

k=0

(t� jh)k

k!
[B1; B2]

Xk+1(jh)

Yk+1(jh)
(x0 � ~x0)

=

+1

k=0

(t� jh)k

k!
Zk+1(jh)(x0 � ~x0)

= 0:

By Lemma 5, we conclude that the following linear system of alge-
braic equations has only trivial solution:

W
1

1
(x0 � ~x0) = 0 (10)

where

W
l
k =

Z�(�h);

� = 1; . . . ; k; � = 0; . . . ; l
:

By Lemma 2, Zk(lh) for k > n is a linear combination of Z�(�h)
for � = 1; 2 . . . ; n; � = 0; 1 . . .. From the above, taking into account
Lemma 4, it is easy to see that Zk(lh), where k > n, l > m, are linear
combinations of Z�(�h), � = 1; 2 . . . ; n; � = 0; 1 . . . ;m. Thus

rank W1

1
= rank Wm

n :

Combining these with (10), we complete the proof.

B. Duality

Let us consider a dual control system

_x�(t)=AT
11x

�(t)+AT
21y

�(t)+BT
1 u(t); t>0 (11a)

y
�(t)=AT

12x
�(t)+AT

22y
�(t�h)+BT

2 u(t); t�0 (11b)

with initial conditions

x
�(+0) = x

�

0; y
�(� ) =  

�(�); � 2 [�h; 0)

where x�(t) 2 n, y�(t) 2 m, u(t) 2 r , t � 0, x�0 2 n;
 � 2 PC([�h; 0); m); symbol ()T means transposition.

Let us consider determining equations

X
�

k(t) =A
T
11X

�

k�1(t) + A
T
21Y

�

k�1(t) +B
T
1 U

�

k�1(t)

Y
�

k (t) =A
T
12X

�

k(t) +A
T
22Y

�

k (t� h) +B
T
2 U

�

k (t)

t � 0; k = 0; 1; . . .

of system (11) with the following initial conditions:

X
�

k(t) = 0; Y �k (t) = 0 if k < 0 or t < 0

U
�

0 (0) = Ir; U
�

k (t) = 0 if t2 + k
2 6= 0:

Definition 2: System (11) is said to be n-controllable with respect
to x� if for any initial data x�0 ,  � and any x�

�
2 n there exist a time

moment t� > 0 and a piecewise continuous control u(t), t 2 [0; t�],
such that for the corresponding solution x�(t) = x�(t; x�0;  

�; u), t >
0, the condition x�(t�) = x�

�
is valid.

The following two statements hold [14].
Proposition 1: We have:

A
T
11 + A

T
21 Im �A

T
22!

�1

A
T
12

k

� B
T
1 +A

T
21 Im �A

T
22!

�1

B
T
2

�

+1

l=0

X
�

k+1(lh)!
l
; k = 0; 1; . . .

where j!j < !1 and !1 is a sufficiently small real number.
Proposition 1: System (11) is n-controllable with respect to x� if

and only if

rank X
�

� (�h); � = 0; . . . ; m; � = 1; . . . ; n = n

where by the symbol [X�� (�h); � = 0; . . . ;m; � = 1; . . . ; n] we de-
note a block matrix of columnsX�� (�h), � = 0; . . . ;m; � = 1; . . . ; n.

Now, we can state the duality result.
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Theorem 2: System (3) is n-observable with respect to x if and
only if (11) is n-controllable with respect to x�.

Proof: By Lemma 1 and Proposition 1, we have

B1 +B2(Im �A22!)
�1A21

� A11 +A12(Im �A22!)
�1A21

k

�

+1

l=0

Zk+1(lh)!
l; k = 0; 1; . . .

AT
11 +AT

21 Im � AT
22!

�1

AT
12

k

� BT
1 + AT

21 Im � AT
22!

�1

BT
2

�

+1

l=0

X�

k+1(lh)!
l; k = 0; 1; . . . (12)

Transposing (12), we have

+1

l=0

Zk+1(lh)!
l =

+1

l=0

X�

k+1
T
(lh)!l:

Then, comparing coefficients of the same power of !, we have

Zk(lh) = X�

k
T
(lh)

for k = 0; 1; . . . and l = 0; 1; . . . It follows that

Z�(�h)

� = 0; . . . ;m; � = 1; . . . ; n

= X�

� (�h); � = 0; 1; . . . ;m; � = 1; 2; . . . ; n
T

which completes the proof.

IV. CONCLUSION

In this note, we have considered the simplest stationary linear dif-
ferential-algebraic systems of observation and control with delays. For
such systems, a number of algebraic properties of determining equation
have been established in order to obtain an effective rank condition for
n-observability in terms of determining equation solutions and, as

a result, the “observability-controllability” duality principle has been
proposed. The results obtained can be generalized to differential-alge-
braic systems with several state and control delays and to problems of
functional observability and controllability. A more general “observ-
ability-controllability” duality principle can also be formulated for such
problems. This will be the object of another note.

APPENDIX

A. Proof of Lemma 1

Multiplying the (5b) by !j at t = jh and summing over j from 0 to
+1, we obtain

+1

j=0

Yk(jh)!
j=

+1

j=0

A21Xk(jh)!
j+

+1

j=0

A22Yk ((j�1)h)!j

=

+1

j=0

A21Xk(jh)!
j+

+1

j=�1

A22Yk(jh)!
j+1:

Hence, we have

+1

j=0

Yk(jh)!
j = (Im �A22!)

�1A21

+1

j=0

Xk(jh)!
j: (13)

Then, we obtain

+1

j=0

Zk(jh)!
j =

+1

j=0

B1Xk(jh)!
j +

+1

j=0

B2Yk(jh)!
j

= B1 +B2(Im � A22!)
�1A21

�

+1

j=0

Xk(jh)!
j: (14)

It is easy to see that (6) is true for i = 0. For k = 2, t = jh > 0, one
can multiply (5a) by !j and sum over j from 0 to +1. Then, we have

+1

j=0

X2(jh)!
j =

+1

j=0

A11X1(jh)!
j +

+1

j=0

A12Y1(jh)!
j

=A11 +

+1

j=0

A12(A22)
jA21!

j

=A11 +A12(Im �A22!)
�1A21

where j!j � !1 < (1=kA22k), and (6) is true for i = 1.
Assuming that (6) holds for i = 0; 1; . . . ; p�1, let us prove it holds

true for i = p, i.e.,

B1 +B2(Im � A22!)
�1A21 �

A11 +A12(Im � A22!)
�1A21

p
�

+1

l=0

Zp+1(lh)!
l

where p is a natural number.
Indeed, by (5a), for k = p + 1, we obtain

+1

j=0

Xp+1(jh)!
j = A11

+1

j=0

Xp(jh)!
j + A12

+1

j=0

Yp(jh)!
j:

By (13), we have

+1

j=0

Xp+1(jh)!
j

= A11

+1

j=0

Xp(jh)!
j + A12(Im � A22!)

�1A21

�

+1

j=0

Xp(jh)!
j

= A11 + A12(Im � A22!)
�1A21

�

+1

j=0

Xp(jh)!
j

= A11 + A12(Im � A22!)
�1A21

p
:

By (14), the proof is complete.
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B. Proof of Lemma 2

By the Cayley–Hamilton theorem, we have

(A(!))n = �

nm

j=1

r0j (A(!))
n
!
j

�

n

i=1

nm

j=0

rij (A(!))
n�i

!
j
; j!j < !1:

Postmultiplying both sides by A(!)��1, � 2 , and premultiplying
by C(!) yields

C(!) (A(!))n+��1 = �

nm

j=1

r0jC(!) (A(!))
n+��1

!
j

�

n

i=1

nm

j=0

rijC(!) (A(!))
n�i+��1

!
j

and taking into account (6), we obtain

+1

l=0

Zn+�(lh)!
l = �

nm

j=1

r0j

+1

l=0

Zn+�(lh)!
l
!
j

�

n

i=1

nm

j=0

rij

+1

l=0

Zn+��i(lh)!
l
!
j
:

By the substitution n + � = 
, we obtain

+1

l=0

Z
(lh)!
l = �

nm

j=1

r0j

+1

l=0

Z
(lh)!
l+j

�

n

i=1

nm

j=0

rij

+1

l=0

Z
�i(lh)!
l+j

:

By letting l + j = s(l = s � j � 0), we obtain

+1

l=0

Z
(lh)!
l = �

nm

j=1

r0j

+1

s=j

Z
 ((s� j)h)!s

�

n

i=1

nm

j=0

rij

+1

s=j

Z
�i ((s� j)h)!s
:

By changing the order of summation, we have

+1

l=0

Z
(lh)!
l = �

+1

s=0

minfs;nmg

j=1

r0jZ
 ((s� j)h)

+

n

i=1

minfs;nmg

j=0

rijZ
�i ((s� j)h) !
s
:

Comparing coefficients of the same power of ! yields

Z
 (lh) = �

�

j=1

r0jZ
 ((l� j)h)�

n

i=1

�

j=0

rijZ
�i ((l� j)h)

for l = 0; 1; . . .; 
 = n + 1; n + 2; . . .; �s = minfs; nmg. This
completes the proof of Lemma 2.

C. Proofs of Lemmas 3 and 4

We leave it to the reader to verify that the proofs of Lemmas 3 and
4 are similar to those of Lemmas 1 and 2.
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