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Representations of Solutions
for Controlled Hybrid Systems

V.M. MARCHENKO, O.N. PODDUBNAYA

An integral representation of solutions expressed by means of solutions of boundary-value
problems of corresponding conjugate system is obtained for linear nonstationary controlled
hybrid systems, This formula is very similar to the well-known Cauchy one in linear system
theory. The results obtained are adjusted for the case of linear stationary hybrid systems with
control.
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Character of hybrid systems

While studying real physical processes one can encounter both dynamic (differential) and algebraic
(functional) dependences. Such processes are described by differential algebraic systems, with some
equations being differential, the other — algebraic. These systems refer to the hybrid class. However, we
have to admit that the term “hybrid systems” is overladen.

Generally speaking, hybridity implies inhomogeneous nature of the process considered or the methods
for its investigation. The term “hybrid systems™ refers to systems describing the processes or the objects with
essentially different characteristics, e.g., those containing in the basic dynamics the continuous and discrete
variables (signals), determinate and random magnitudes or actions, etc.. with all these determining the
character (nature) of hybrid systems.

There are numerous examples of hybrid systems. In the control field the following pattern of hybrid
system is known: linear continuous time independent object described by linear differential equations with
the mathematical model based on continuously operating recording device. The object is controlled by
discrete linear time independent controller described by finite difference equations, discretely operating
recording device being used. These types of systems are commonly studied in the levels called the discrete
data systems or digital control systems.

Another standard example of hybrid control system is switching system where the behavior can be
described by the finite number of dynamic models (systems of differential or difference equations) along
with the set of rules for switching between the models.

One more field of hybrid systems represents studying qualitative properties, (e.g., stability) of dynamic
systems described by difference-differential equations with discontinuous coefficients, systems with variable
structure of dynamics.

In practice the classic example of hybrid system is heating and cooling systems in a dwelling house.
A heater and an air conditioning along with the characteristics of heat flow form a controlled system.
A thermostat is a discretely randomly controlled system which mainly deals with the symbols “too hot”, “too
cold” or “normal”.

There are a lot of reasons for applying the hybrid models. First and foremost they include adequacy of
these models, their valid simplification, the use of digital machines (control by computer programs); hybrid
systems come into being while modeling the hierarchical structure of real control systems, specifically in
describing dynamic, discrete, stochastic subsystems, complex systems etc.

Further information with respect to hybrid systems can be found in [1-10].
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In what follows we obtain for linear hybrid nonstationary systems the entire representation of solutions
in the form of integrals based on solutions of the corresponding conjugate systems to generalize to these
systems the known for ordinary systems representation by the formula of variation of constants (Cauchy
formula) [11, 12]. Note, that the matters of solvability and representation of solutions of hybrid systems were
considered before in the work [8] which analyzed mainly their “dynamic™ part. It is worth noting that the
paper in question suggests the new statement of initial problem.

Initial problem
We consider the simplest hybrid system

(1) = Ay (1) x(0) + A (1) y(2) + By (1) ulr),
(1)

(1) = Ay () x(t) + Ay () y(t = h) + By(Du(t), 1 2 1.

m. nxn

Here x(1)e R" u(t)e R", y(1)e R™; the components of matrix-functions A (f)eR T,

s A]j(!) eR
- mxn - mxm — nxr mxr ~ B Tarauiies O ] s a1y

Ay e R™", Ap(t)e R™™, Bi(HeR™', By(1)e R™", 1€ R, are piecewise continuous functions. In (1)

at t =1, consideration was given to the right-sided derivative.

Initial conditions for the system (1) are given in the form

x(ty +0) = x(ty) = x5, Y(D)=w(T), Tty = Aty ), (2)
where i =const >0, x ge R", y(') is a piecewise continuous in [ty — A, 15] m-vector function.
. . _ I‘ﬁ:—r(-,—a— !
We introduce the notation 7, = lim | ————| for t>1¢;, T;, =0.
ge—+0 )"." | !
Representation of solutions of nonstationary systems
Let the matrix-functions X (1.7), Z (£,7), )"'{I,t) are solutions of the conjugate system
ax (et . - .
#‘“;l\ (t.0) A4 () +Y (1,04 (1)=0, 1<, Tt —kh, (3)
at
Y ) =X (1,04 5(0) + Y (L1 + M) Ap(t+h), Tt (4)
Y (t,1)=0, 1> (5)
X (60— kh=0)=X"(t.0 =kl +0)=Z (1,0 = kh) A5y(1 — kh), (6)
Z (Lt —kh)=2" (1,0 — kh + hy Apo(t — kh + h), k =1.2,.... T, - (7

The relation (3) deals with the corresponding one-sided derivatives.
We denote by /, the unity & x & -matrix. The following theorem holds.
Theorem 1. The solution of system (1) with initial conditions (2) corresponding to the piecewise

continuous control u(:) exists, is unique and can be calculated by formulae

L]
_\"(!.!0 -0)xy + _[)"U_r +h) Ay(t+ h)y(t)dr+
o —h

!
+ [(_\"([.r)b‘-l(r'l +Y (1,7) By () u(r)de+ Z (0,0 =T h) A yp(t = T (t = Toh = h) +

n




Ty
+ 3 Z (1,0 — kh)By (1 — kityu(t — kh) =

£=0

‘.r(z) atrzr,,if X (,t-0)=1, e R"™" and Z"(t,1)=0e "™

} (8)

’_y{r) atr 21y, if X (£.1-0)=Ay ()R " and Z'(1,1)=1,, € R™™

=
m =

Proof. That the solution of system (1) with initial conditions (2) and piecewise continuous control exists
and is unique one can convince by integrating this system “by steps” [11, 12]. We prove the representation
(8) by using the classic ideas of constructing conjugate boundary value problems [11-13].

By multiplying the first equation of the system (1) by piecewise continuous in the second argument
matrix function .\"u.t) with the points of discontinuity of the first kind just at the time instants

t=t-kh,k=12,.,7, and integrating by t the range of ¢, and ¢ we obtain
J - - - -
j'l.\‘ (D2 =X (L, AL (D) -X (L,DARTY(D-X (6,78 (Tu(t)dr=0. (9
fa

By multiplying the second equation of the system (1) by piecewise continuous in t matrix function

¥'(t,1). € [t;,] and integrating by T in the range of f, and r we obtain

I
I)"u.t_)(}'(r}— A5 (D)x(1) = A2a(t) y(z = h)— By (tu(1))de=0. (10)

Io

By assuming in the second equation of the system (1) the argument t=¢-kh, k =1,2,...,7,, multiplying

- . . ~ - ¥ . . ~
the obtained equation by the matrix function Z (1, —kh) and summing over 1 in the range of 0 and 7, we

obtain

[ T,
N Z7 (1,0 —kh) y(t—kh)— Y Z (1,1 —kh) A (1 —kh) x(1 — kh) -

k=0 k=0
(11)
T, . T =
- EZ {r.lfkh).lzz(r—k!;]_l'(r—kh—h)— ZZ (1,6 —kh) B (t —kh)u(t - kh)=0.
k=0 k=0
We now add the equalities (9)—(11)
% -
J'.\' (L)(x(t) = A (Dx(t) = A () y(t) = By(t)u(t))dr +
to
I *
+ J'Y (L, D((1) = Ax(1)x(1) = A () ¥(t = h) — Ba(t)u(t))dt +
Iy
"l - Tf .
+ 3 Z(t,t—kh)y(t —kh) = 3. Z (1,0 —kh) Ay (1 — kh)x(t - kh) - (12)
k=0 k=0

Iy

— 3" Z" (1,1~ kh) Ay (t — ki) y(1 — kh — h) -
k=0
Ti .
= Z (10— kh)Bo(t—kh)u(t —kh) =0, 1> 1.
k=0




Let us transform the terms in (12):
Ty > . . """ . *
EZ (1,0 —kh)y(t —kh)= i[ (t.t =kh)y(t—kh)+ Z (1,t) p(1), (13)
k=0 k=1
T . . .
N Z (t.t—kh) Ay (1 = kh)x(1 - kh) = S Z (t.t —kh) Aoy (t = kh)x(t —kh) + Z (1,0) A3 (£) (1), (14)
k=0 k=1
T,
N Z (1,6 — kh) Ay (¢ ~ kh)y(t — kh—h) =
k=0
-, .
= Y Z7(t,0 —kh) Apy (1 = ki) y(t —kh—h) + Z (8.1 - T,h) Ayt = Th)w(t =Th=h) =
k=0
"r * -
=22 (1t~ kh+ h) A5yt —kh+h) Wt = kh) + Z (1,6 = Toh) At = T )yt Th—h). (15)
k=1
t —h
|V (L) p(t) y(r-h)dt = j} (t.t+h)Ayp(z+h) p(t)de =
o tn-h
! in
= |}"u,r+h;.{ n(trh)p(tyde+ [Y (L1+h) Ap(t+h) y(t)dt-
fn g=h
t .
— J-}" (£, T+ h) Al +h) y(t)dr,
or by assuming ¥*(r.7)=0 for >t and taking into account the initial conditions (2) we obtain
[V (60 Ay ()t -h)dr=
(16)

1]
r Y]
= [V (L r+h)dpt+y(vde+ |V (Lr+h) Ayt +h)yt)dr.
4] to-h
matrix-functions X (£.t) having discontinuities of the first kind only at the points
integrating by parts in each interval (1 —kh,t —kh+h) and making use of integral

With the
v=t—khk=12,.,T,,
additivity we obtain at 1 =T h>1;
! T t—khth £ t=Tih
[X'eoia=Y [ X @oxoda+r [ X (E)ind=
i k=1 t—kh o
Lo, . (—kh+h ) \
:Z X(t,t—kh+h=0)x(t —kh+h)-X (1.0 =kh+0)x(t —kh) = j' X (t.t)x(t)dr |+
k=1 (—kh )
t-Tih
$ X = Th=0)x(t=Th) - X (1.ty+0)xg - [ X (no)x(t)dr=
]

T
S (X (4t —kh=0) =X (1,0 —kh+0))x(t—kh) -

k=1

[
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I3
~ [X () (D) e+ X (10— 0)x(r) - X (1,1, +0)x;. (17)

4]
In view of transformations (13)—(17) we rewrite the equality (12) in the form

!
- [(X" (1) .\*(I.’_L—h](‘t) i }"tr.r:,-J:,(_n).\-ltm’r =

Ity

~ j( Xt AM-Y L0+ Y (Lt+ M A(T+I))(T)er -
1y
o . £ Ll
= I)' (tT+ Ayt +(T)d— [(X (1,78 (1) +Y (4, 0)B (1))l 1)k +

n—h 5]

+ (X (01~ kh=0)= X (1,0 —kh+0))x(t —kh)+ X (1.t = 0)x() = X (1.1, +0)xp +
k=1

7
ks EZ'(M — k)t =k +Z" (1.0 (1) -

k=1

T . .
=3 Z (10— k) (t—kh)x(t —kh)~ Z" (1,0) A (0)x(r) -

k= (18)

“..r - -
= 3 Z (1.0 —kh + h)A y5(t —kh + h)y(t — kh) = Z" (1.1 - T,h) A 59t = T,y %

k=1

;

!

x(t—T;h—h)— \_/ (1.0 = kh)B (1 = kh)u(t —kh) =0, t>15,t -Th=t,.
k=0
Since the matrix-functions X (¢,7), Z" (t,7). Y "(1.7) satisfy the conjugate system the relation (18) will
take the form
I [

- [P+t wmdi- (X (0B (0+F (1, 1)By(0))u(t)de+

In—h I

+ X (0,0 =0)x(1)~ X (t, +0)x + Z" (6,0 W(0) - Z" (1.0) A (1) x(1) — (19)

-

. Hio
= Z (Lt =T Ayt =Tyt = Th=hy = Y Z (1,6 —kh)B(t — khyut —kh) =0,

=

1>ty t-Th=t,

By analyzing the previous transformations for 71— T,/1=¢; we convince that the relation (19) is fulfilled
by substituting the term — X" (1,43 +0)xy for — X (1,15 — 0)x. This is valid also for =T, h # 1, since in the
latter case X' (1,75 +0)=X (1,15 —0). Whence in view of the boundary conditions for the conjugate system

we come to the relation (8) at r>¢; .

The direct verification illustrates that this relation remains valid also at r=1¢,. Theorem | has been

completely proved.

wn




Corollary. The solution x(r), y(1).1 21, of system (1) corresponding to the initial conditions (2) and

piecewise continuous control u(t), T& [1y.7] exists, is unique and can be calculated by the formulae

iy t
x()=X (gt J)"(Lt +h)Aya(T +m1;!(t)d:+ﬁ‘\‘ (OB (D +Y (LB u(tydr, £ =1, (20)
ph 4]

where the initial conditions for the conjugate system are determined in the form

X' (r-0)=1,.2 (t.)=0e R™",

and
b}
W =X (t.tp =0)xg+ [}' (t, T+ h) Ass( T+ i T)dr +

to—h

- J'( A"'U.ﬂb’ﬂﬂ+)"u.t}33(tnu{r):h + 2" (0,0 =T ) Ayt = T s = T — ) + (21)

i

-

+ iz'(r.z—kh)b’:u—k!-:)u(r—khL 121,

k=0

Here the initial conditions of the conjugate system (3)—(7) are specified in the form Z' ()= 1,,
X' (1.t-0)= Ay ()€ R™".

Indeed. in case of (20) as (6) implies the function X “(1,1) jumps vanish. So the function is considered
to be continuous at t<t. Specifically, Xr = ('lp:_\"(f.r[,¢ DIES .\"(1.!”]4 In case of (21) the function
X"(1,7) has jumps at the points T=¢-kh. At that with 1 -1, being multiple of / the jump is performed also
at the point 7, to yield in view of (6) the value of X (6.t4—0) inthe formula of (21). Thus, the corollary has
been proved.

Note. The matrix-function X'(t.t).t<t in the conjugate system (3)~(7) at the discontinuity
points T=1—kh, k =1,2.... 7, is supposed to be left-continuous to consider at these points in the equation (3)
left-hand derivatives at t<r. Then in representations of solutions by formulae (8). (21) one can write

r‘ N s ~ =¥ ~
X (t,1g)instead of X (7,19 —0}.
Representation of solutions of stationary systems
Let us consider the hybrid system (1) with constant matrices

Ay ()= Ay, A1) = Ay, A (1) = Ay, Aga(t) = A,
(22)

Bi(t)=B,By(1)=8,,15=0.

The following theorem holds.
Theorem 2. The solution of the system (1), (2), (22) corresponding to the piecewise continuous control
u(t), >0 exists. is unique and can be represented in the form
0 r
X()x o+ I)'(_.' -1~ h)Ad 3 p(T)dt + J(.\'(! 0B+ Yt =B )u(t)dt +

-h 1]

;r!
+ Z(T Ayt = Th=h)+ > Z(kh) B yu(t —khy=

k=0
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(1) at 120, if X(0)=1I,eR""and Z(0)=0e R""" ‘

= (23)

(1) at 120, if X(0)=4,eR""and Z(0)=1, e R™™" |

where the matrix-functions X(-), Z(:). Y(-) are the solutions of the conjugate system
a0, X(DA+Y()A5=0, 120, 1 #kh, (24)

dt

F()=X(1) A+ Yt =h)dqs, 120, (25)
Y{)=0, 1 <0, (26)
X (kh) - X(kh—0)=Z(kh) Ay, (27)
Z(kh)=Z(kh—h)A,, k=1,2,...T,- (28)
In (24) at the points r=kh, k=0,1,... 7, the discontinuity of the matrix-function X(r) consideration is given

to the right-hand derivative, the matrix-function being assumed right-continuous. Theorem 2 validity follows
from Theorem | subject to the fact that in a stationary case the solution of conjugate system (24)—(28) is the
matrix-functions

X' D=Xt-0. Y t.0)=Y1-1). Z (t.7)=2Z(1 - 1),

where X(-), Z(-), Y() is the solution of the system (24)-(28).

We now consider the simplest example:
x(1)=0, 120,
y(t)y=y(t-h), t=0,
x(n)eR", y(r)eR"™,
v(+0) = x(0)=xg, ¥(t)=wy(1), T€[-h0).
I'he conjugate system (24)—(28) is of the form

dX (1)

=0.t20, t =kh,
dt

Y(y=Y(@-h),1=20,
Yy=0, t<0,
X(kh)y=X(kh-0).
Z(kh)=Z(kh-h), k=12,..T,-

By (23) we obtain the solution in the form x(r)=x,,t20 if X(0)=/7, and Z(0)=0, then X(r)=1,,
Y(OH=0vr20, Zkn)=0, k=1...T,; yO)=wt-Th-h), t20, if X(0)=4,=0 and Z(0)=1/, . then
X()=0, Y()=0 Y20, Z(kh=1,, k=1,..T,.
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