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Abstract. The paper deals with the problem of relative controllability for hybrid linear 
stationary systems. For such systems, we introduce the determining equations and give 
solution representations into series their determining equation solutions. Then algebraic 
properties of the determining equation solutions are investigated, in particular, the well-
known Hamilton-Cayley matrix theorem is extended to the solutions of the system 
determining equations. As a result a parametric criterion for the relative controllability is 
established. 
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1. INTRODUCTION 
 
Many complex control systems (air traffic control, 
chemical engineering, transportation, manufacturing 
systems, robotics and others) are described both 
differential and algebraic equations with delay. They 
are examples of  “hybrid” systems. Hybrid system 
under consideration consists of differential and 
different matrix equations, so we deal with both 
continuous and discrete variables. But it should be 
noted that the term “hybrid systems” has been widely 
used in the literature in various senses [1-6]. 
 
In the paper, we consider a linear stationary hybrid 
system of the form 
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here ( ) nx t ∈ , ( ) , ( ) , 0r mu t y t t∈ ∈ ≥ ; 

11 12 21 22, , , ,n n n m m n m mA A A A× × × ×∈ ∈ ∈ ∈  

1 2,n r m rB B× ×∈ ∈  are constant (real) matrices  
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and )(tu  is a piecewise continuous r -vector function  
(control), h  is a constant delay , 0h > . We regard 
an absolute continuous n -vector function ( )x ⋅  and a 
piecewise continuous m -vector function ( )y ⋅  as a 
solution of System (1) if they satisfy the first 
equations (1) for almost everywhere 0>t  and the 
second one for 0≥t . 
 
System (1) should be completed with initial 
conditions 
 

0( 0) , ( ) ( ), [ , 0)nx x y h+ = ∈ τ = ψ τ τ ∈ −      (2) 
 
where )(⋅ψ  is a piecewise continuous m -vector 
function in the interval ]0,[ h− . 
 
Let us introduce notation: 
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tTt , where symbol [ ]z  means entire part of the 

number z; 
[ ]k d× ω  is the set of k  by d  matrices over the ring 

of polynomials in ω ; 
nI  is the identity n by n matrix. 

 



 

 

Consider the determining equations of System (1): 
 

11 1 12 1 1 1( ) ( ) ( ) ( )k k k kX t A X t A Y t B U t− − −= + +           (3) 
 

21 22 2( ) ( ) ( ) ( )k k k kY t A X t A Y t h B U t= + − +           (4) 

0,1,...;=k   0≥t  

 

with initial conditions  

 

( ) 0, ( ) 0 0 0k kX t Y t if k or t= = < < ;

2 2
0 (0) , ( ) 0 0r kU I U t if k t= = + ≠ . 

 

One can prove that the solution ( )x ⋅ , ( )y ⋅ of System 

(1) with initial conditions (2) can be represented in 

the following form [4]: 
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where vector functions 1 0( , , )s t x ψ  and 2 0( , , )s t x ψ  

do not depend on control. 

 
 
2. ALGEBRAIC PROPERTIES OF THE 

DETERMINING EQUATION SOLUTIONS 
  

Denoting 

 

( ) 1
11 12 22 21( ) [ ],n n
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( ) 1
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we can state [4]: 

Lemma 1. The following identities take place 
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1ω<ω , for some sufficiently positive number 1ω . 

 
Consider the characteristic equation of )(ωA : 
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Here *

1 ( ) [ ]m mQ ×ω ∈ ω is the adjoint of matrix 

( )ω− 22AIm , i.e. ( ) *
22 1 ( ) ( )mI A Q− ω ω = α ω , 

where ( ) 1 1
22( ) det [ ]mI A ×α ω = − ω ∈ ω . 

Suppose 1ω<ω  for some sufficiently positive 
number, then 
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where ijr  ( 0,1,..., ; 0,1,..., )i n j nm= =  are real 
number with 00 1r = . 
Equation (8) can be rewritten as 
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Lemma 2. The solutions ( ), ( ), 0X t Y t tγ γ ≥ , of the 

determining equations (3), (4) satisfy the 

characteristic equation (9), i.e.  
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for 1, 2,...n nγ = + +  and 0,1,...k = ; min{ , }k k nm=θ . 



 

 

Proof. By the Hamilton-Cayley matrix theorem, we 
obtain 
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If we multiply (12) by matrix 
( ) 1( ) ( ),A Bβ−ω ω β∈ , from the right, then  
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By (5), it can be rewritten as 
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or, by denoting γ=β+n  and setting 

( 0)k j s k s j+ = = − ≥ , we get 
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and, changing the order of summing, we have 
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If we equate the coefficients of the same powers of 
ω , then we obtain (10) being true. 
So, (10) holds and we return to (11). 
Multiplying both sides of (12) by matrix 
( ) 1( ) ( ),A Bβ−ω ω β∈ , from the right and by matrix 

( )C ω  from the left, we have 
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and, using the reasons as above, we can prove 
identity (11). 
This completes the proof of Lemma 2. 
 
Introduce notation: 

( )( ) 11
21 11 12 22( ) ,

−−ω = − − ω ωm nD I A I A A A          (13) 

( )( ) ( )1
21 11 12 21 12 2 1 2( ) ,−

ω = − + ω + ω+nF A I A A A A B B B  (14) 

( ) 1
11 12( ) −ω = − ω ωnG I A A             (15) 

 
Lemma 3. The following identities are valid: 
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1ω<ω , where 1ω  is a sufficiently small positive 

number. 

Proof. Multiplying each determining equations (3), 

(4) at moment 0t =  by kω  and summing over all k 

from 0 to +∞ , we obtain 
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and, by changing sk =−1 , the expression (19) can 

be rewritten as 
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It follows from here and (20) that  
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Let us prove identity (16) by induction. 

Base step. Combining (18) and (20), we get 
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so, (16) holds for 0=j . Suppose it is true for  

1−= pj  and any natural number p , i.e. 
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Let us now show that (16) is true for pj = . 



 

 

Multiplying each equation of (3), (4) at t ph=  by 

kω  and summing over all k from 0 to +∞ , we obtain  
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By setting 1−= ks , (22) can be rewritten as 
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Combining (23) and (24), we obtain 
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and, taking into account (13), we have 
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This proves (16) for pj = . By induction, (16) is true 

for 0,1,..j = . Combining (15), (16), and (24), we 

conclude that (17) is also true. Hence, the proof is 

completed. 
 

By definition, put 
 

( )11( ) det nI Aβ ω = − ω , 
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adjoint matrices of matrices ( )ω− 11AIn  and  

( )*
21 2 12( ) ( )mI A Q Aβ ω − ω ω  respectively. 

Consider the characteristic equation of )(ωD : 
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That, for 1ω  being sufficiently small positive 
number, it is equivalent to 
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Lemma 4. The solutions of the determining 

equations (3), (4) satisfy the following conditions: 
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for 0,1,...k =  and , 1,...m mν = + . 

The proof of Lemma 4 is very similar to Lemma 2 

one and can be omitted. 

Remark 1. Lemma 2 for 1+=γ n  and Lemma 4 for 
m=ν  can be regarded as generalizations of the well-

known Hamilton-Cayley matrix theorem to solutions 
of the determining equations (3), (4). 
 
 
3. PARAMETRIC CRITERION FOR 1H - t –

CONTROLLABILITY OF STATIONARY 
HYBRID SYSTEMS  

 
Let H  be an arbitrary p  by ( )n m+  matrix. 
Definition 1. System (1) is called H - 1t - 
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corresponding solution ( ), ( )x t y t  of the system. 
 
We say that the system is  

(i)  relatively −1t controllable if mnIH += ; 
(ii)  relatively −1t controllable in x  if [ ]0nIH = ; 
(iii) relatively −1t controllable in y if [ ]mIH 0= . 
 

For simplicity, we put  
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Then the corresponding solution of the system (1), 
(26) can be represented in the form 
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The H –attainability set )( 1tK  of System (1), (26) at 
the moment 1t  is described as follows 
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Here )(⋅U  is the set of piecewise continuous r -
vector-function in the interval [ ]1,0 t  and 

{ }nmRHK +∈µ∀µ= :0  is the linear span of the columns 
of matrix H . Then H - 1t -controllability of the 
system is equivalent to the inclusion 01)( KtK ⊃  or 

⊥⊥ ⊂ 01))(( KtK  for orthogonal complements. Then 
we state the following 
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the condition 0=′Hg  also takes place. 
Proof. We have: 
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This finishes the proof. 
Remark 2. The statement of Theorem 1 gives an 
implicit criterion for H - 1t -controllability of 
stationary hybrid systems. 
For the sequel, we need the following result. 
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hold if and only if the conditions 
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Proof. Sufficiency is evident. The proof of necessity 
is by induction over j . It is not difficult to see that 
the statement of Lemma 5 is true for 0=j . Assume 
now that statement of Lemma 5 is true for 1j α= − , 
where α∈ . By the induction hypothesis, for 

α=j , ),)1(( htht α−+α−∈τ , the identity (27) 
takes the form 
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By the inductive assumption, we obtain 
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It follows from here, by differentiating µ  times 
( ,...1,0=µ ) with respect to τ , that 
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and we have as 0t hτ → − α −  
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This completes the proof. 
 
We can now formulate a parametric H - 1t -
controllability criterion expressed in terms of the 
determining equation solutions. 
Theorem 2. System (1) is H - 1t -controllable iff 
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Corollary 1. System (1) is  relatively 1t -controllable 
if and only if 
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Corollary 2. System (1) is relatively 1t -controllable 
in x  if and only if  
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Corollary 3. System (1) is relatively 1t -controllable 
in y  if and only if  
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4. CONCLUDING REMARKS  
 
In the paper, we have investigated algebraic 

properties of determining equations for the simplest 

hybrid systems. The results considered have been 

applied to obtaining parametric criteria for relative 

controllability of such a system. Similarly, one can 

study a dual observability problem.  
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