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Abstract: The paper considers several models of 
linear hybrid systems described by discrete-
difference and difference-differential equations with 
control. Special attention is paid to the difference-
differential hybrid systems in symmetric form. For 
solutions of such systems, a variation-of-constants 
formula is proposed and the relative controllability-
observability principle is established. For 
stationary systems, we introduce the determining 
equations and present solutions in the form of series 
of their determining equation solutions. Then 
algebraic properties of solutions of determining 
equation are investigated, in particular, the well-
known Hamilton-Cayley matrix theorem is extended 
to the solutions of the system of determining 
equations. As a result, parametric criteria for the 
relative controllability and relative observability 
are given.  
 

1 Introduction 
 
Many complex control systems (air traffic control, 
chemical engineering, transportation, manufacturing 
systems, robotics, and others) are described both in 
differential and algebraic equations with delay. They 
are examples of “hybrid” systems. It should be 
noted that the term “hybrid systems” has been 
widely used in the literature in various senses [1-4]. 
Generally speaking, “hybridness” reflects dual 
structure of the systems. At present, hybrid systems 
are studied separately, that is continuous analysis 
methods are used to solve continuous systems and 
discrete analysis methods are employed for discrete 
systems. The aim of the paper is to give a unified 
approach to the construction of mathematical 
models of dynamical systems described by discrete, 

difference and differential equations, taking 
difference-differential hybrid systems as standard 
systems. Consider, for example, the simplest 
discrete-continuous hybrid system 
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( ) ( ) [ ], [ , ( 1) ],
[ ] ( ) [ 1], 0,1,...

x t A x t A y k t kh k h
y k A x kh A y k k

= + ∈ +
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with initial conditions of the form 
0 0( 0) (0) , [ 1] ,x x x y y+ = = − =  

where ( ) nx t ∈ , ( ) , ( ) ,r mu t y t∈ ∈  
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and taking initial conditions as follows 
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it is not difficult to see that if ( ) ( ), 0y t y t t= ≥ . 
System (1) can be represented as the following 
difference-differential hybrid system in normal form 
[4] 

11 12 1

21 22 2 0

( ) ( ) ( ) ( ) ( ) ( ) ( ),
( ) ( ) ( ) ( ) ( ) ( ) ( ), ,

x t A t x t A t y t B t u t
y t A t x t A t y t h B t u t t t

= + +
= + − + ≥

 

with initial conditions 
0 0 0 0 0( 0) ( ) , ( ) ( ), [ , ).x t x t x y t h t+ = = τ = ψ τ τ∈ −  



     

That is why we pay a special attention to hybrid 
systems, consisting of differential and difference 
equations. Taking into account 2-D system reasons, 
we consider such a system in symmetric form with 
respect to the differential and shift operators: 

11 12 1

21 22 2 0

( ) ( ) ( ) ( ) ( ) ( ) ( ),
( ) ( ) ( ) ( ) ( ) ( ) ( ), ,

x t A t x t A t y t B t u t
y t h A t x t A t y t B t u t t t

= + +
+ = + + ≥

(2) 

where 0( ) , ( ) , ( ) , ;n r mx t u t y t h t t∈ ∈ + ∈ ≥  h  
is a given positive number; components of the 
matrix-valued functions  

11 12 21( ) , ( ) , ( ) ,n n n m m nA t A t A t× × ×∈ ∈ ∈

22 ( ) ,m mA t ×∈ 1( ) ,n rB t ×∈ 2 ( ) m rB t ×∈  
are piecewise continuous in each compact interval 
[ ] [ )0, ,a b t∈ +∞ . 
For System (2) we consider the following initial-
valued problem as 

[ )0 0 0 0( 0) , ( ) ( ), ,x t x y t t h+ = τ = ψ τ τ ∈ + ,        (3) 

where 0 ,nx ∈ ψ  is a piecewise continuous m –
vector function in [ ]0 0,t t h+ . 
A solution 0 0 0 0( ; , , , ), ( ; , , , )x t t x u y t h t x u+ψ ψ  for 

0t t≥  is defined as follows: ( )x ⋅  is continuous n -
vector function and ( )y ⋅  is piecewise continuous m -
vector function, satisfying the first equation of (1) 
for  0t t≥  except at the points 0 , 0,1,...t t kh k= + =  
and the second equation of (1) for 0t t≥ . 
For differentiable ψ  and u , System (2) can be 
reduced to a neutral type time-delay equation and, as 
a result, the variation-of-constants formula can be 
used to represent the system solutions. In general, 
the situation is more complicated. However, by 
using the method of steps, one can state that the 
solution of System (2) corresponding to initial 
problem (3) and to the piecewise continuous control 
u  exists and is unique. 
 
2 A variation–of–constants formula for 
hybrid systems 
 

Let us denote 0
t

t tT
h
−⎡ ⎤= ⎢ ⎥⎣ ⎦

 and define matrix 

functions * * *( , ), ( , ), ( , )X t Z t Y tτ τ τ  as solutions of an 
adjoint system of the form: 

*
* *

11 21
( , ) ( , ) ( ) ( , ) ( ),X t X t A Y t A∂ τ

− = τ τ + τ τ
∂τ

 

, , 1,2,..., ;tt t kh k Tτ ≤ τ ≠ − =  
* * *

12 22( , ) ( , ) ( ) ( , ) ( ), ;Y t h X t A Y t A tτ − = τ τ + τ τ τ ≤
*( , ) 0, ;Y t t hτ = τ > −  

* *

*
21

( , 0) ( , 0)

( , ) ( ), 1,2,..., ;t

X t t kh X t t kh

Z t t kh A t kh k T

− − − − + =

= − − =
 

* *
22( , ) ( , ) ( ), 1,2,..., 1tZ t t kh h Z t t kh A t kh k T− − = − − = − . 

According to the adjoint system, solutions *( , )X t τ  
and *( , )Y t τ  are  piecewise-continuous with respect 
to argument τ  matrix functions with jumps at  
points , 1,2,..., tt kh k Tτ = − = . The matrix function 

*( , )Z t t kh−  is regarded as discrete with respect to 
the second argument. The last three equations 
establish the initial and boundary conditions for the 
adjoint system under consideration. 
Theorem 1. The solution of the system (2) with 
initial conditions (3) and piecewise continuous 
control 0( ), ,u t t t>  exists, is unique and can be 
written as follows 

0

0

* *
0 0( , 0) ( , ) ( )
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*( , ) ( )t tZ t t T h t T h+ − ψ − =  
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0
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− = ∈⎪ ⎪⎩ ⎭

 

Further in the paper, we consider a linear stationary 
hybrid system, i.e. 

11 11 12 12 21 21 22 22( ) , ( ) , ( ) , ( ) ,A t A A t A A t A A t A= = = =

1 1 2 2 0( ) , ( ) , 0B t B B t B t= = = .         (4) 
For stationary systems Theorem 1 can be detailed if 
we take into account that   

* * *( , ) ( ), ( , ) ( ), ( , ) ( )X t X t Y t Y t Z t Z tτ = −τ τ = −τ τ = −τ  
and the adjoint system can be rewritten as 

11 21( ) ( ) ( ) , 0, , 1,..., ;tX t X t A Y t A t t kh k T= + ≥ ≠ = (5) 
12 22( ) ( ) ( ) , 0;Y t h X t A Y t A t+ = + ≥           (6) 

( ) 0, ;Y t t h= <                         (7) 



     

21( ) ( 0) ( ) , 1,2,..., ;tX kh X kh Z kh A k T− − = =     (8) 
22( ) ( ) , 1,2,..., 1tZ kh h Z kh A k T+ = = − .          (9) 

Remark 1. If 0tT = , then equations (8) and (9) 
disappear. Equation (9) disappears also when 1tT = . 
In (5) ( )X t  have right hand derivative at the points 

, 1,2,..., tt kh k T= = . 
Theorem 2. The solution of the system (2)–(4) with  
piecewise continuous control ( ), 0,u t t >  exists, is 
unique and can be written as follows 

0 0
0

( ; , , ) ( ) ( ) ( )
h

x t x u X t x Y t h dψ = + − τ + ψ τ τ +∫  

( )1 2
0

( ) ( ) ( )
t

X t B Y t B u d+ − τ + − τ τ τ∫      (10) 

0 (0) , ( ) 0 ;n n n m
nfor t if X I Z h× ×≥ = ∈ = ∈  

0 0
0

( ; , , ) ( ) ( ) ( )
h

y t x u X t x Y t h dψ = + − τ + ψ τ τ +∫  

( )1 2
0

( ) ( ) ( )
t

X t B Y t B u d+ − τ + − τ τ τ +∫  

2
1

( ) ( ) ( ) ( )
tT

t t
k

Z T h t T h Z kh B u t kh
=

+ ψ − + −∑   (11) 

(0) 0 , ( )m n m m
mfor t h if X Z h I× ×≥ = ∈ = ∈ . 

 
3  Algebraic properties of the determining 
equation solutions 
 
Introduce determining equations of System (2)–(4): 
 

1 11 12 1

21 22 2

( ) ( ) ( ) ( ),
( ) ( ) ( ) ( )

k k k k

k k k k

X t A X t A Y t B U t
Y t h A X t A Y t B U t

+ = + +
+ = + +

  (12) 

1,0,1,...;k = −  t h≥ − , 

with initial conditions  

2 2
0

( ) 0, ( ) 0 0 0;

(0) , ( ) 0 0.
k k

r k

X t Y t if k or t

U I U t if k t

= = < <

= = + ≠
 

By induction, we can prove Lemmas 1 and 2. 

Lemma 1. The following identities hold: 

( )( ) 11
11 12 22 21

k
mA A I A A

−−+ ω − ω ×  

( )( )1
1 12 22 2

0
( ) ;j

m k
j

B A I A B X jh
+∞−

=
× + ω − ω ≡ ω∑   

( ) ( )( ) 11 1
22 21 11 12 22 21

k
m mI A A A A I A A

−− −− ω ω + ω − ω × 

( )( )1
1 12 22 2

0
( ) ;j

m k
j

B A I A B Y jh
+∞−

=
× + ω − ω ≡ ω∑

1,2,...k =  

( ) 1
22 2 0

0
( ) ;j

m
j

I A B Y jh
+∞−

=
− ω ω ≡ ω∑  

( )( ) 11
22 21 11 12

j
nA A I A A

−−+ ω − ω ×  

( )( )1
21 11 1 2

0
( ) ;k

n k
k

A I A B B Y jh
+∞−

=
× ω − ω + ≡ ω∑  

( ) ( )( ) 11 1
11 12 22 21 11 12

j
n nI A A A A I A A

−− −− ω ω + ω − ω ×

( )( )1
21 11 1 2

0
( ) ;k

n k
k

A I A B B X jh
+∞−

=
× ω − ω + ≡ ω∑

1,2,...;j =  

( ) 1
11 1

0
(0) ;k

n k
k

I A B X
+∞−

=
− ω ω ≡ ω∑  

1,ω < ω  1ω  is a sufficiently small positive number. 

Denote: 

( )
( )

1
22

1
11

( ) det [ ],

( ) det [ ].

m

n

I A

I A

α ω = − ω ∈ ω

β ω = − ω ∈ ω
 

*
1 ( ) [ ]m mQ ×ω ∈ ω  and *

2( ) [ ]n nQ ×ω ∈ ω  are the 

adjoint of matrices ( )22mI A− ω  and ( )11nI A− ω  

respectively. 

Introduce the characteristic equation of the matrix 

( )( )1
11 12 22 21mA A I A A−+ ω − ω : 

( )( )1
11 12 22 210 ( ) det n mI A A I A A−= ∆ λ = λ − + ω − ω =  

*
12 1 21

11
( )

det
( )n

A Q A
I A

⎛ ⎞ω ω
= λ − − =⎜ ⎟⎜ ⎟α ω⎝ ⎠

 

( )
( )*

11 12 1 21
1 det ( ) ( ) ( ) .

( )
nn I A A Q A= λα ω − α ω − ω ω

α ω
 (13) 

Consider the characteristic equation of the matrix 

( )( )1
22 21 11 12nA A I A A−+ ω − ω : 

( )( )1
22 21 11 120 ( ) det m nI A A I A A−= ∆ λ = λ − − ω − ω =  



     

*
21 2 12

22
( )

det
( )m

A Q A
I A

⎛ ⎞ω ω
= λ − − =⎜ ⎟⎜ ⎟β ω⎝ ⎠

 

( )
( )*

22 21 2 12
1 det ( ) ( ) ( ) .

( )
mm I A A Q A= λβ ω − β ω − ω ω

β ω
(14) 

Suppose 1ω < ω  where 1ω  is a sufficiently small 
positive number. Then (13) and (14) can be 
represented as 

0 0
0

n nm n i j
ij

i j
r −

= =
λ ω =∑ ∑  and 

0 0
0

m nm m i j
ij

i j
p −

= =
λ ω =∑ ∑  

respectively. 
Here ijr  and kjp , 0,1,..., ; 0,1,..., ; 0,1,...,i n k m j nm= = = , are 

real numbers with 00 1r =  and 00 1p = . 

The last two equations can be rewritten as 

0
1 1 0

,
nm n nmn n j n i j

j ij
j i j

r r −

= = =
λ = − λ ω − λ ω∑ ∑ ∑  

0 1
1 1 0

, .
nm m nmm m j m i j

j ij
j i j

p p −

= = =
λ = − λ ω − λ ω ω < ω∑ ∑ ∑  

Lemma 2. Solutions of the determining equations 

(12) satisfy the following conditions: 

0
1

min{ , }
( ) (( ) )j

j

k nm
X kh r X k j hγ γ

=
= − − −∑  

1 0

min{ , }
(( ) ),

n
ij i

i j

k nm
r X k j hγ−

= =
− −∑ ∑  

0
1

1 0

min{ , }

min{ , }

( ) (( ) )

(( ) ),

j
j

n
ij i

i j

k nm

k nm

Y kh r Y k j h

r Y k j h

γ γ
=

γ−
= =

= − − −∑

− −∑ ∑

 

0
1

1 0

min{ , }

min{ , }

( ) ( )

(( ) ),

k j k j
j

m
ij k j

i j

k nm

k nm

X h p X h

p X i h

−
=

−
= =

ν = − ν −∑

− ν −∑ ∑

 

0
1

1 0

min{ , }

min{ , }

( ) ( )

(( ) ),

k j k j
j

m
ij k j

i j

k nm

k nm

Y h p Y h

p Y i h

−
=

−
= =

ν = − ν −∑

− ν −∑ ∑

 

for 0,1,..., 1,...k m= ν = + and 1,...nγ = + , 

where (...) 0
j

k i=
=∑  if j i< . 

For 1nγ = +  and 1mν = +  Lemma 2 can be regarded 
as a generalization of the well-known theorem of 
Hamilton-Cayley from matrix theory to solutions of 
the determining equations (12). 
 
4  Solution increase estimate 
 
Theorem 3. Suppose 1

[0, ]
max ( )

t h
t M

∈
ψ =  and 

2( ) tu t M eσ≤ , 0t ≥  (where 1M , 2M  and σ  are 
positive constants), then there exist positive 
numbers N  and α  such that all solutions of the 
system (2)–(4) satisfy the following conditions 

( ) , ( ) , 0,t tx t Ne y t Ne tα α≤ ≤ ≥  
where ,N α  are defined only by 1 2, ,M M σ  and 
system parameters. 
 

5  Solution representations into series of their 
determining equation solutions 
 
Theorem 4. The solution of the system (2)–(4) with 
piecewise continuous control ( ), 0u τ τ ≥ , exists, is 
unique and can be represented by the following 
formulas: 

( )
0 1

0 0
0

( ; , , ) ( ) ( )
!

kt ih
k

k i
t ih

t ih
x t x u X ih u d

k

−+∞
+

=
− ≥

−τ−
ψ = τ τ+∑ ∑ ∫

0( ; , ,0), 0,x t x t+ ψ >                   (15) 

( )
0 1

0 0
0

( ; , , ) ( ) ( )
!

kt ih
k

k i
t ih

t ih
y t x u Y ih u d

k

−+∞
+

=
− ≥

−τ−
ψ = τ τ+∑ ∑ ∫  

0 0

0

( ) ( ) ( ; , ,0), 0,
i

t ih

Y ih u t ih y t x t

− ≥

+ − + ψ ≥∑   (16) 

where vector functions 0 0( ; , ,0), ( ; , ,0)x t x y t xψ ψ  

depend on initial data only. 

Proof. From (9) and (12) we obtain  

( ) 1
0 22 2( ) , 1,2,...jY jh A B j−= =  

( ) 1
22( ) ( ) , 1,2,...jZ jh Z h A j−= = . 

Thus the last term in (11) can be revised 



     

2 0
1 1

( ) ( ) ( ) ( )
t tT T

j j
Z jh B u t jh Y jh u t jh

= =
− = −∑ ∑ . 

According to Theorem 3, we can apply Laplas 
transformation to the system (5)–(9). As a result, the 
following relations take place 

( )
1

(0) ( ) ( 0) pkh

k
X X kh X kh e

+∞ −

=
+ − − =∑  

11 21( ) ( ) ( ) ,pX p X p A Y p A= − −  

12 22( ) ( ) ( ) ,phe Y p X p A Y p A= +  
where Re p > α . Or  

( ) 1
12 22( ) ( ) ph

mY p A X p I e A
−

= − , 

( )
1

(0) ( ) ( 0) pkh

k
X X kh X kh e

+∞ −

=
+ − − =∑  

( ) 1
11 12 22 21( ) ph ph

n mX p pI A A e I A e A
−− −⎛ ⎞= − − −⎜ ⎟

⎝ ⎠
. 

Last two relations can be rewritten as 

( )
1

( ) (0) ( ) ( 0) pkh

k
X p X X kh X kh e

+∞ −

=

⎛ ⎞
= + − − ×∑⎜ ⎟

⎝ ⎠

( )
11

11 12 22 21
1 1 1 ,ph ph

n mI A A e I A e A
p p p

−−− −⎛ ⎞
× − − −⎜ ⎟

⎝ ⎠
(22) 

( )
1

( ) (0) ( ) ( 0) pkh

k
Y p X X kh X kh e

+∞ −

=

⎛ ⎞
= + − − ×∑⎜ ⎟

⎝ ⎠
 

( ) 1
12 22

ph ph
mA e I A e

−− −× − ×  

( )
11

11 12 22 21
1 1 1 .ph ph

n mI A A I A e e A
p p p

−−− −⎛ ⎞
× − − −⎜ ⎟

⎝ ⎠
(23) 

If we apply Laplas transformation to the term  

( )1 2
0

( ) ( ) ( )
t

X t B Y t B u d− τ + − τ τ τ∫  of formulas (10),  

(11) and take into account (22), (23), then we have: 

( )1 2( ) ( ) ( )X p B Y p B u p+ =  

( )
1

(0) ( ) ( 0) pkh

k
X X kh X kh e

+∞ −

=

⎛ ⎞
= + − − ×∑⎜ ⎟

⎝ ⎠
 

( )
11

11 12 22 21
1 1 1 ph ph

n mI A A e I A e A
p p p

−−− −⎛ ⎞
× − − − ×⎜ ⎟

⎝ ⎠
 

( ) 1
1 12 22 2 ( )ph ph

mB A e I A e B u p
−− −⎛ ⎞× + − =⎜ ⎟

⎝ ⎠
 

( )
1

(0) ( ) ( 0) pkh

k
X X kh X kh e

+∞ −

=

⎛ ⎞
= + − − ×∑⎜ ⎟

⎝ ⎠
 

( ) 1
11 12 22 2110

1 k
ph ph

mkk
A A e I A e A

p

+∞ −− −
+=

⎛ ⎞× + − ×∑ ⎜ ⎟
⎝ ⎠

 

( ) 1
1 12 22 2 ( )ph ph

mB A e I A e B u p
−− −⎛ ⎞× + −⎜ ⎟

⎝ ⎠
. (24) 

Now if we recall initial conditions of (10) in the 

form (0) , ( ) 0nX I Z h= =  and (8), we get 

( )
1

( ) ( 0) 0
k

X kh X kh
+∞

=
− − =∑ . Then using the first 

identity of Lemma 1, we can rewrite (24) as 

( )1 2 110 0

1( ) ( ) ( ) ( ) ( ).jph
kkk j

X p B Y p B u p X jh e u p
p

+∞ +∞ −
++= =

+ = ∑ ∑  

It follows from here, by returning to the original, 
that (10) can be represented as (15). 
Similarly, considering the initial conditions of (11) 

in the form (0) 0, ( ) mX Z h I= = , we obtain 

( )
1

(0) ( ) ( 0) pkh

k
X X kh X kh e

+∞ −

=

⎛ ⎞
+ − − =∑⎜ ⎟

⎝ ⎠
 

( ) ( )1 1
22 21 22 21

1

kph ph ph ph
m

k
A e A e I A e A e

+∞ − −− − − −

=
= = −∑ . 

If we combine this with (24) and the second identity 

of Lemma 1, we get 

( )1 2 110 0

1( ) ( ) ( ) ( ) ( ).jph
kkk j

X p B Y p B u p Y jh e u p
p

+∞ +∞ −
++= =

+ = ∑ ∑  

Finally, returning to the original, we come to (16). 
This completes the proof of Theorem 4. 

 
6  Controllability, observability, duality 
 
Definition 1. System (2), (3) is said to be: 
i) n − controllable in x  on [ ]0,t t∗  if for any 

0 , nx x∗ ∈  and for any piecewise continuous m 
vector function [ ]0 0( ), ,t t hψ τ τ∈ + , there exists a 



     

piecewise continuous control [ ]0( ), ,u t t∗τ τ ∈ , such 
that  

0 0( ; , , , )x t t x u x∗ ∗ψ =                   (25) 
ii) n − reachable in x  on [ ]0 ,t t∗  if (25) holds for 

0 0x =  and [ ]0 0( ) 0, ,t t hψ τ = τ ∈ + . 

The notion of n −  controllability in y  can be 
defined similarly. 
 
Consider the following adjoint system 0( )t t h∗ > +  

[ ]

11 21

12 22 0

( ) ( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) ( ) ( ) 0, , .

d x x A y A
d
y h x A y A t t

∗ ∗ ∗

∗ ∗ ∗
∗

τ + τ τ + τ τ =
τ

τ− − τ τ − τ τ = τ∈
(26) 

with initial conditions  
( ]( 0) ( ) , ( ) ( ), ,x t x t x y t h t∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗− = = τ = ψ τ τ ∈ − and 
the output 

* *
* * *( ) ( ; , , )z t z t t x= ψ =  

[ ]* *
1 2 0 *( ) ( ) ( ) ( ), ,x B y B t t= τ τ + τ τ τ ∈  ,     (27) 

where * 1 1 1
* *( ) , ( ) , ,n m nx y x× ∗ × ×τ ∈ τ ∈ ∈ ψ  is a 

piecewise continuous m-row function. 
Definition 2. System (26), (27) is said to be 

n − observable in  x on [ ]0 ,t t∗  if  

[ ]*
* * * * * 0 *( ; , ) ( ; , , ) . . ,z t t x z t t x a e t t t∗

∗ ψ = ψ ∈ ⇒ * *x x= . 
Lemma. 4. Along with trajectories of the basic 
System (2) and adjoint Systems (26), (27), the 
following duality correlation is valid: 

* *
* * 0 0( 0) ( 0) ( 0) ( 0)x t x t x t x t− − = + + +  

0 * *

0 * 0

* * *( ) ( ) ( ) ( ) ( )
t h t h t

t t t
y t h t dt y t h dt z t u t dt

+ +
+ − ψ − − +∫ ∫ ∫ . 

Proof. We have 
* *

* * 0 0( 0) ( 0) ( 0) ( 0)x t x t x t x t− − − + + =  
* * *

0 0 0

* * *( ( ) ( )) ( ) ( ) ( ) ( )
t t t

t t t

d x t x t dt x t x t dt x t x t dt
dt

= = + =∫ ∫ ∫  

* *

0 0

* *
11 12( ) ( ) ( )( ( ) ( ) ( ) ( )

t t

t t
x t x t dt x t A t x t A t y t= + + +∫ ∫  

) (
*

0

*
1 21( ) ( ) ( ) ( ) ( ) ( )

t

t
B t u t dt y t y t h A t x t+ + − + + +∫  

)22 2( ) ( ) ( ) ( )A t y t B t u t dt+ + =  
*

0

* * *
11 21( ( ) ( ) ( ) ( ) ( )) ( )

t

t
x t x t A t y t A t x t dt= + + +∫  

*

0

* * *
12 22( ( ) ( ) ( ) ( ) ( )) ( )

t

t
y t h x t A t y t A t y t dt+ − − + + +∫

(
0 * *

0 * 0

* *
1( ) ( ) ( ) ( ) ( ) ( )

t h t h t

t t t

y t h t dt y t h y t x t B t
+ +

∗+ − − − + +∫ ∫ ∫ψ  

)
0

0

* *

* 0

* *
2

*

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .

t h

t

t h t

t t

y t B t u t dt y t h t dt

y t h y t dt z t u t dt

ψ
+

+
∗

+ = − −

− − +

∫

∫ ∫
 

That finishes the proof. 
Theorem 5. The following statements are 
equivalent: 
i) System (2) is n − controllable in x  on [ ]0 *,t t ; 

ii) System (2) is n − reachable in x  on [ ]0 *,t t ; 
iii) The matrix rows 

[ ]* *
* 1 * 2 0 *( , ) ( ) ( , ) ( ), ,X t B Y t B t t+ ∈τ τ τ τ τ  are linearly 

 independent a.e. in [ ]0 *,t t ; 

iv) System (26), (27) is n − observable in x  on 
[ ]0 *,t t . 
Sketch of the proof. The equivalence i) ⇔  ii) 
follows from linearity of System (2), in particular, 
taking into account the formula for solution 
representations. To prove ii) ⇔  iii) observe, by the 
solution representation, in Theorem 1 that 

n − attainability of System (2) in x  on [ ]0 *,t t  is 
equivalent  to the implication: 

[ ]* *
1 * 0 *, ( ( , ) ( ) ( , )) 0 . . ,n Tg g X t B Y t a e t t tτ τ τ∗∈ + = ∈

0 ng⇒ = ∈ and, as a result, ii) ⇔  iii) is 
established. Let us now prove ii) ⇔  iv).First of all, 
System (2) is n −  attainable with respect to x  on 
[ ]0 *,t t  if and only if the implication holds: 

*, ( ,0,0, ) 0 0n T ng g x t u for u g∈ = ∀ ⇒ = ∈  
or, putting [ ]* * * *, ( ) 0, , ,Tx g t h t= = ∈ −ψ τ τ  and 
taking into account the duality correlation, we have  

*

0

*
* * *( ; , ,0) ( ) 0, 0

t
n

t
z t t x u t dt u x= ∀ ⇒ = ∈∫  

that is equivalent to [ ]*
* * 0 *( ; , ,0) 0 . . , .Z t t x a e t t t= ∈  

This, by linearity of the adjoint system, is equivalent 
to n − observability in x  on [ ]0 *,t t  of System (26), 
(27). The proof is complete. 



     

7  Parametric criteria for controllability and 
observability of  stationary hybrid systems 
 
In this section, along with system (2)–(4), we 
consider the following adjoint system 

[ )

* * *
11 21

*
12 22

* *
0

( ) ( ) ( ) ,

( ) ( ) ,

( 0) (0) , ( ) ( ), ,0 ,

x t x t A y t A

y t h x A y t A

x x x y h

∗ ∗

= +

+ = +

+ = = = ∈ −τ ψ τ τ

  (28) 

with the output 
* * * *
0 1 2( ) ( ; , ) ( ) ( )z t z t x x t B y t B= = +ψ .        (29) 

Definition 3. System (2)–(4) is called 1t - 
controllable for 1t h>  if for any vector 

1

1

n mx
y

+⎡ ⎤
∈⎢ ⎥

⎣ ⎦
 and for any initial conditions (3) there 

exists a piecewise continuous control ( )u ⋅  such that 

the condition 1 1

1 1

( )
( )

x t x
y t y

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 holds for the 

corresponding solution ( ), ( )x t y t  of the system.  
Theorem 4. System (2) is relatively 1t -controllable 
if and only if 

1 0
( )

, 0,1,..., ; 0,1,...,min{ , } ( ),
( )

k
t

k

X ih
rank k n i T m m n

Y ih −
⎡ ⎤⎡ ⎤

= = = +⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦

 

where 
1 0

1
0

limt
tT

h− ε→+

− ε⎡ ⎤= ⎢ ⎥⎣ ⎦
. 

Theorem 5. System (2) is relatively 1t -controllable 
in x  if and only if  

1 0( ) , 1,2,..., ; 0,1,...,min{ , } .k trank X ih k n i T m n−⎡ ⎤= = =⎣ ⎦  

Theorem 6. System (2) is relatively 1t -controllable 
in y  if and only if  

1 0
( ) , 0,1,..., ; 0,1,...,min{ , } .k trank Y ih k n i T m m

−
⎡ ⎤= = =⎣ ⎦  

Definition 4. System (2)–(4) is called 
n − controllable in x  if it is n −  controllable with 

respect to x  on [ ]0 *,t t  for some * 0t t> . 
Definition 5. System (28), (29) is n − observable 
with respect to x  if  

[ ]* * * *
0 0 0 * 0 0( ; , ) ( , , ) . . , .Z t x Z t x a e t t t x xψ ψ∗ ∗= ∈ ⇒ =  

Theorem 6. The following statements are 
equivalent: 
i)   System (2)-(4) is n − controllable in x ; 
ii)  System (28), (29) is n − observable in x ; 
iii)  [ ]( ) , 1,2,..., ; 0,1,...,mkrank X ih k n i n= = = . 

8  Concluding remarks 
 
In the paper we have obtained definite integral and 
series representations of solutions for the hybrid 
difference-differential systems in symmetric form. 
The results considered have been applied to obtain 
parametric criteria for several types of relative 
controllability and observability in the case of 
stationary systems. As a result, the duality principle 
is formulated. Methods used can be generalized to 
more general controllability problems for the 
following ones. For given 0,p s p≥ > , and 0s >  

System (2) is said to be ( , )n s p− -controllable in 
x  at time 0t t s∗ = +  if for any initial data 0 ,ϕ ϕ  and 

0 ,ψ ψ  and for any piecewise continuous r -vector 
function v  there exists a piecewise continuous 
control function ( )u u= ⋅  such that  for  the  
corresponding  solutions  the  following  
condition holds  

0 0( ; , , , ) ( ; , , , )x t t s u x t t p v∗ ∗ ∗ ∗− = −ϕ ϕ ψ ψ . 
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